Metamath Proof Explorer


Theorem htpyid

Description: A homotopy from a function to itself. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses htpyid.1 G=xX,y01Fx
htpyid.2 φJTopOnX
htpyid.4 φFJCnK
Assertion htpyid φGFJHtpyKF

Proof

Step Hyp Ref Expression
1 htpyid.1 G=xX,y01Fx
2 htpyid.2 φJTopOnX
3 htpyid.4 φFJCnK
4 iitopon IITopOn01
5 4 a1i φIITopOn01
6 2 5 cnmpt1st φxX,y01xJ×tIICnJ
7 2 5 6 3 cnmpt21f φxX,y01FxJ×tIICnK
8 1 7 eqeltrid φGJ×tIICnK
9 simpr φsXsX
10 0elunit 001
11 fveq2 x=sFx=Fs
12 eqidd y=0Fs=Fs
13 fvex FsV
14 11 12 1 13 ovmpo sX001sG0=Fs
15 9 10 14 sylancl φsXsG0=Fs
16 1elunit 101
17 eqidd y=1Fs=Fs
18 11 17 1 13 ovmpo sX101sG1=Fs
19 9 16 18 sylancl φsXsG1=Fs
20 2 3 3 8 15 19 ishtpyd φGFJHtpyKF