Metamath Proof Explorer


Theorem htpyid

Description: A homotopy from a function to itself. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses htpyid.1 𝐺 = ( 𝑥𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹𝑥 ) )
htpyid.2 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
htpyid.4 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
Assertion htpyid ( 𝜑𝐺 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐹 ) )

Proof

Step Hyp Ref Expression
1 htpyid.1 𝐺 = ( 𝑥𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹𝑥 ) )
2 htpyid.2 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 htpyid.4 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
4 iitopon II ∈ ( TopOn ‘ ( 0 [,] 1 ) )
5 4 a1i ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) )
6 2 5 cnmpt1st ( 𝜑 → ( 𝑥𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t II ) Cn 𝐽 ) )
7 2 5 6 3 cnmpt21f ( 𝜑 → ( 𝑥𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹𝑥 ) ) ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) )
8 1 7 eqeltrid ( 𝜑𝐺 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) )
9 simpr ( ( 𝜑𝑠𝑋 ) → 𝑠𝑋 )
10 0elunit 0 ∈ ( 0 [,] 1 )
11 fveq2 ( 𝑥 = 𝑠 → ( 𝐹𝑥 ) = ( 𝐹𝑠 ) )
12 eqidd ( 𝑦 = 0 → ( 𝐹𝑠 ) = ( 𝐹𝑠 ) )
13 fvex ( 𝐹𝑠 ) ∈ V
14 11 12 1 13 ovmpo ( ( 𝑠𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 0 ) = ( 𝐹𝑠 ) )
15 9 10 14 sylancl ( ( 𝜑𝑠𝑋 ) → ( 𝑠 𝐺 0 ) = ( 𝐹𝑠 ) )
16 1elunit 1 ∈ ( 0 [,] 1 )
17 eqidd ( 𝑦 = 1 → ( 𝐹𝑠 ) = ( 𝐹𝑠 ) )
18 11 17 1 13 ovmpo ( ( 𝑠𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 1 ) = ( 𝐹𝑠 ) )
19 9 16 18 sylancl ( ( 𝜑𝑠𝑋 ) → ( 𝑠 𝐺 1 ) = ( 𝐹𝑠 ) )
20 2 3 3 8 15 19 ishtpyd ( 𝜑𝐺 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐹 ) )