Step |
Hyp |
Ref |
Expression |
1 |
|
htpyid.1 |
⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
2 |
|
htpyid.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
htpyid.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
6 |
2 5
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t II ) Cn 𝐽 ) ) |
7 |
2 5 6 3
|
cnmpt21f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
8 |
1 7
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → 𝑠 ∈ 𝑋 ) |
10 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑠 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑠 ) ) |
12 |
|
eqidd |
⊢ ( 𝑦 = 0 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑠 ) ) |
13 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑠 ) ∈ V |
14 |
11 12 1 13
|
ovmpo |
⊢ ( ( 𝑠 ∈ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 0 ) = ( 𝐹 ‘ 𝑠 ) ) |
15 |
9 10 14
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝐺 0 ) = ( 𝐹 ‘ 𝑠 ) ) |
16 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
17 |
|
eqidd |
⊢ ( 𝑦 = 1 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑠 ) ) |
18 |
11 17 1 13
|
ovmpo |
⊢ ( ( 𝑠 ∈ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐺 1 ) = ( 𝐹 ‘ 𝑠 ) ) |
19 |
9 16 18
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑠 𝐺 1 ) = ( 𝐹 ‘ 𝑠 ) ) |
20 |
2 3 3 8 15 19
|
ishtpyd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐹 ) ) |