| Step | Hyp | Ref | Expression | 
						
							| 1 |  | htpyid.1 | ⊢ 𝐺  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 2 |  | htpyid.2 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | htpyid.4 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 4 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 6 | 2 5 | cnmpt1st | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  𝑥 )  ∈  ( ( 𝐽  ×t  II )  Cn  𝐽 ) ) | 
						
							| 7 | 2 5 6 3 | cnmpt21f | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ( ( 𝐽  ×t  II )  Cn  𝐾 ) ) | 
						
							| 8 | 1 7 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  ( ( 𝐽  ×t  II )  Cn  𝐾 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  𝑠  ∈  𝑋 ) | 
						
							| 10 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑥  =  𝑠  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 12 |  | eqidd | ⊢ ( 𝑦  =  0  →  ( 𝐹 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 13 |  | fvex | ⊢ ( 𝐹 ‘ 𝑠 )  ∈  V | 
						
							| 14 | 11 12 1 13 | ovmpo | ⊢ ( ( 𝑠  ∈  𝑋  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐺 0 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 15 | 9 10 14 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 𝑠 𝐺 0 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 16 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 17 |  | eqidd | ⊢ ( 𝑦  =  1  →  ( 𝐹 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 18 | 11 17 1 13 | ovmpo | ⊢ ( ( 𝑠  ∈  𝑋  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐺 1 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 19 | 9 16 18 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 𝑠 𝐺 1 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 20 | 2 3 3 8 15 19 | ishtpyd | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐹 ( 𝐽  Htpy  𝐾 ) 𝐹 ) ) |