| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishtpy.1 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 2 |  | ishtpy.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 3 |  | ishtpy.4 | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 4 |  | htpycom.6 | ⊢ 𝑀  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐻 ( 1  −  𝑦 ) ) ) | 
						
							| 5 |  | htpycom.7 | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝐹 ( 𝐽  Htpy  𝐾 ) 𝐺 ) ) | 
						
							| 6 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 8 | 1 7 | cnmpt1st | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  𝑥 )  ∈  ( ( 𝐽  ×t  II )  Cn  𝐽 ) ) | 
						
							| 9 | 1 7 | cnmpt2nd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  𝑦 )  ∈  ( ( 𝐽  ×t  II )  Cn  II ) ) | 
						
							| 10 |  | iirevcn | ⊢ ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 1  −  𝑧 ) )  ∈  ( II  Cn  II ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 1  −  𝑧 ) )  ∈  ( II  Cn  II ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 1  −  𝑧 )  =  ( 1  −  𝑦 ) ) | 
						
							| 13 | 1 7 9 7 11 12 | cnmpt21 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 1  −  𝑦 ) )  ∈  ( ( 𝐽  ×t  II )  Cn  II ) ) | 
						
							| 14 | 1 2 3 | htpycn | ⊢ ( 𝜑  →  ( 𝐹 ( 𝐽  Htpy  𝐾 ) 𝐺 )  ⊆  ( ( 𝐽  ×t  II )  Cn  𝐾 ) ) | 
						
							| 15 | 14 5 | sseldd | ⊢ ( 𝜑  →  𝐻  ∈  ( ( 𝐽  ×t  II )  Cn  𝐾 ) ) | 
						
							| 16 | 1 7 8 13 15 | cnmpt22f | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐻 ( 1  −  𝑦 ) ) )  ∈  ( ( 𝐽  ×t  II )  Cn  𝐾 ) ) | 
						
							| 17 | 4 16 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ( ( 𝐽  ×t  II )  Cn  𝐾 ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑋 )  →  𝑡  ∈  𝑋 ) | 
						
							| 19 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑥  =  𝑡  →  ( 𝑥 𝐻 ( 1  −  𝑦 ) )  =  ( 𝑡 𝐻 ( 1  −  𝑦 ) ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑦  =  0  →  ( 1  −  𝑦 )  =  ( 1  −  0 ) ) | 
						
							| 22 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 23 | 21 22 | eqtrdi | ⊢ ( 𝑦  =  0  →  ( 1  −  𝑦 )  =  1 ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑦  =  0  →  ( 𝑡 𝐻 ( 1  −  𝑦 ) )  =  ( 𝑡 𝐻 1 ) ) | 
						
							| 25 |  | ovex | ⊢ ( 𝑡 𝐻 1 )  ∈  V | 
						
							| 26 | 20 24 4 25 | ovmpo | ⊢ ( ( 𝑡  ∈  𝑋  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 𝑡 𝑀 0 )  =  ( 𝑡 𝐻 1 ) ) | 
						
							| 27 | 18 19 26 | sylancl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑋 )  →  ( 𝑡 𝑀 0 )  =  ( 𝑡 𝐻 1 ) ) | 
						
							| 28 | 1 2 3 5 | htpyi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑋 )  →  ( ( 𝑡 𝐻 0 )  =  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝑡 𝐻 1 )  =  ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 29 | 28 | simprd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑋 )  →  ( 𝑡 𝐻 1 )  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 30 | 27 29 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑋 )  →  ( 𝑡 𝑀 0 )  =  ( 𝐺 ‘ 𝑡 ) ) | 
						
							| 31 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑦  =  1  →  ( 1  −  𝑦 )  =  ( 1  −  1 ) ) | 
						
							| 33 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 34 | 32 33 | eqtrdi | ⊢ ( 𝑦  =  1  →  ( 1  −  𝑦 )  =  0 ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝑦  =  1  →  ( 𝑡 𝐻 ( 1  −  𝑦 ) )  =  ( 𝑡 𝐻 0 ) ) | 
						
							| 36 |  | ovex | ⊢ ( 𝑡 𝐻 0 )  ∈  V | 
						
							| 37 | 20 35 4 36 | ovmpo | ⊢ ( ( 𝑡  ∈  𝑋  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( 𝑡 𝑀 1 )  =  ( 𝑡 𝐻 0 ) ) | 
						
							| 38 | 18 31 37 | sylancl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑋 )  →  ( 𝑡 𝑀 1 )  =  ( 𝑡 𝐻 0 ) ) | 
						
							| 39 | 28 | simpld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑋 )  →  ( 𝑡 𝐻 0 )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 40 | 38 39 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑋 )  →  ( 𝑡 𝑀 1 )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 41 | 1 3 2 17 30 40 | ishtpyd | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝐺 ( 𝐽  Htpy  𝐾 ) 𝐹 ) ) |