| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishtpy.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
ishtpy.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 3 |
|
ishtpy.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 4 |
|
htpycom.6 |
⊢ 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 ( 1 − 𝑦 ) ) ) |
| 5 |
|
htpycom.7 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ) |
| 6 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 8 |
1 7
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t II ) Cn 𝐽 ) ) |
| 9 |
1 7
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ×t II ) Cn II ) ) |
| 10 |
|
iirevcn |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑧 ) ) ∈ ( II Cn II ) |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑧 ) ) ∈ ( II Cn II ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 1 − 𝑧 ) = ( 1 − 𝑦 ) ) |
| 13 |
1 7 9 7 11 12
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑦 ) ) ∈ ( ( 𝐽 ×t II ) Cn II ) ) |
| 14 |
1 2 3
|
htpycn |
⊢ ( 𝜑 → ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ⊆ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 15 |
14 5
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 16 |
1 7 8 13 15
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 ( 1 − 𝑦 ) ) ) ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 17 |
4 16
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → 𝑡 ∈ 𝑋 ) |
| 19 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 20 |
|
oveq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 𝐻 ( 1 − 𝑦 ) ) = ( 𝑡 𝐻 ( 1 − 𝑦 ) ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 1 − 𝑦 ) = ( 1 − 0 ) ) |
| 22 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 23 |
21 22
|
eqtrdi |
⊢ ( 𝑦 = 0 → ( 1 − 𝑦 ) = 1 ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑦 = 0 → ( 𝑡 𝐻 ( 1 − 𝑦 ) ) = ( 𝑡 𝐻 1 ) ) |
| 25 |
|
ovex |
⊢ ( 𝑡 𝐻 1 ) ∈ V |
| 26 |
20 24 4 25
|
ovmpo |
⊢ ( ( 𝑡 ∈ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑡 𝑀 0 ) = ( 𝑡 𝐻 1 ) ) |
| 27 |
18 19 26
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝑀 0 ) = ( 𝑡 𝐻 1 ) ) |
| 28 |
1 2 3 5
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( ( 𝑡 𝐻 0 ) = ( 𝐹 ‘ 𝑡 ) ∧ ( 𝑡 𝐻 1 ) = ( 𝐺 ‘ 𝑡 ) ) ) |
| 29 |
28
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝐻 1 ) = ( 𝐺 ‘ 𝑡 ) ) |
| 30 |
27 29
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝑀 0 ) = ( 𝐺 ‘ 𝑡 ) ) |
| 31 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 32 |
|
oveq2 |
⊢ ( 𝑦 = 1 → ( 1 − 𝑦 ) = ( 1 − 1 ) ) |
| 33 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 34 |
32 33
|
eqtrdi |
⊢ ( 𝑦 = 1 → ( 1 − 𝑦 ) = 0 ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝑦 = 1 → ( 𝑡 𝐻 ( 1 − 𝑦 ) ) = ( 𝑡 𝐻 0 ) ) |
| 36 |
|
ovex |
⊢ ( 𝑡 𝐻 0 ) ∈ V |
| 37 |
20 35 4 36
|
ovmpo |
⊢ ( ( 𝑡 ∈ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑡 𝑀 1 ) = ( 𝑡 𝐻 0 ) ) |
| 38 |
18 31 37
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝑀 1 ) = ( 𝑡 𝐻 0 ) ) |
| 39 |
28
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝐻 0 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 40 |
38 39
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝑀 1 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 41 |
1 3 2 17 30 40
|
ishtpyd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐺 ( 𝐽 Htpy 𝐾 ) 𝐹 ) ) |