Step |
Hyp |
Ref |
Expression |
1 |
|
ishtpy.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
ishtpy.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
3 |
|
ishtpy.4 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
|
htpycom.6 |
⊢ 𝑀 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 ( 1 − 𝑦 ) ) ) |
5 |
|
htpycom.7 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ) |
6 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
8 |
1 7
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t II ) Cn 𝐽 ) ) |
9 |
1 7
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ×t II ) Cn II ) ) |
10 |
|
iirevcn |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑧 ) ) ∈ ( II Cn II ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑧 ) ) ∈ ( II Cn II ) ) |
12 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 1 − 𝑧 ) = ( 1 − 𝑦 ) ) |
13 |
1 7 9 7 11 12
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑦 ) ) ∈ ( ( 𝐽 ×t II ) Cn II ) ) |
14 |
1 2 3
|
htpycn |
⊢ ( 𝜑 → ( 𝐹 ( 𝐽 Htpy 𝐾 ) 𝐺 ) ⊆ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
15 |
14 5
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
16 |
1 7 8 13 15
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 ( 1 − 𝑦 ) ) ) ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
17 |
4 16
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐽 ×t II ) Cn 𝐾 ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → 𝑡 ∈ 𝑋 ) |
19 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
20 |
|
oveq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 𝐻 ( 1 − 𝑦 ) ) = ( 𝑡 𝐻 ( 1 − 𝑦 ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 1 − 𝑦 ) = ( 1 − 0 ) ) |
22 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
23 |
21 22
|
eqtrdi |
⊢ ( 𝑦 = 0 → ( 1 − 𝑦 ) = 1 ) |
24 |
23
|
oveq2d |
⊢ ( 𝑦 = 0 → ( 𝑡 𝐻 ( 1 − 𝑦 ) ) = ( 𝑡 𝐻 1 ) ) |
25 |
|
ovex |
⊢ ( 𝑡 𝐻 1 ) ∈ V |
26 |
20 24 4 25
|
ovmpo |
⊢ ( ( 𝑡 ∈ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑡 𝑀 0 ) = ( 𝑡 𝐻 1 ) ) |
27 |
18 19 26
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝑀 0 ) = ( 𝑡 𝐻 1 ) ) |
28 |
1 2 3 5
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( ( 𝑡 𝐻 0 ) = ( 𝐹 ‘ 𝑡 ) ∧ ( 𝑡 𝐻 1 ) = ( 𝐺 ‘ 𝑡 ) ) ) |
29 |
28
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝐻 1 ) = ( 𝐺 ‘ 𝑡 ) ) |
30 |
27 29
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝑀 0 ) = ( 𝐺 ‘ 𝑡 ) ) |
31 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
32 |
|
oveq2 |
⊢ ( 𝑦 = 1 → ( 1 − 𝑦 ) = ( 1 − 1 ) ) |
33 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
34 |
32 33
|
eqtrdi |
⊢ ( 𝑦 = 1 → ( 1 − 𝑦 ) = 0 ) |
35 |
34
|
oveq2d |
⊢ ( 𝑦 = 1 → ( 𝑡 𝐻 ( 1 − 𝑦 ) ) = ( 𝑡 𝐻 0 ) ) |
36 |
|
ovex |
⊢ ( 𝑡 𝐻 0 ) ∈ V |
37 |
20 35 4 36
|
ovmpo |
⊢ ( ( 𝑡 ∈ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑡 𝑀 1 ) = ( 𝑡 𝐻 0 ) ) |
38 |
18 31 37
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝑀 1 ) = ( 𝑡 𝐻 0 ) ) |
39 |
28
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝐻 0 ) = ( 𝐹 ‘ 𝑡 ) ) |
40 |
38 39
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑋 ) → ( 𝑡 𝑀 1 ) = ( 𝐹 ‘ 𝑡 ) ) |
41 |
1 3 2 17 30 40
|
ishtpyd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐺 ( 𝐽 Htpy 𝐾 ) 𝐹 ) ) |