Step |
Hyp |
Ref |
Expression |
1 |
|
phtpycc.1 |
|
2 |
|
phtpycc.3 |
|
3 |
|
phtpycc.4 |
|
4 |
|
phtpycc.5 |
|
5 |
|
phtpycc.6 |
|
6 |
|
phtpycc.7 |
|
7 |
|
iitopon |
|
8 |
7
|
a1i |
|
9 |
2 3
|
phtpyhtpy |
|
10 |
9 5
|
sseldd |
|
11 |
3 4
|
phtpyhtpy |
|
12 |
11 6
|
sseldd |
|
13 |
1 8 2 3 4 10 12
|
htpycc |
|
14 |
|
0elunit |
|
15 |
|
simpr |
|
16 |
|
simpr |
|
17 |
16
|
breq1d |
|
18 |
|
simpl |
|
19 |
16
|
oveq2d |
|
20 |
18 19
|
oveq12d |
|
21 |
19
|
oveq1d |
|
22 |
18 21
|
oveq12d |
|
23 |
17 20 22
|
ifbieq12d |
|
24 |
|
ovex |
|
25 |
|
ovex |
|
26 |
24 25
|
ifex |
|
27 |
23 1 26
|
ovmpoa |
|
28 |
14 15 27
|
sylancr |
|
29 |
|
simpll |
|
30 |
|
elii1 |
|
31 |
|
iihalf1 |
|
32 |
30 31
|
sylbir |
|
33 |
32
|
adantll |
|
34 |
2 3 5
|
phtpyi |
|
35 |
29 33 34
|
syl2anc |
|
36 |
35
|
simpld |
|
37 |
|
simpll |
|
38 |
|
elii2 |
|
39 |
|
iihalf2 |
|
40 |
38 39
|
syl |
|
41 |
40
|
adantll |
|
42 |
3 4 6
|
phtpyi |
|
43 |
37 41 42
|
syl2anc |
|
44 |
43
|
simpld |
|
45 |
2 3 5
|
phtpy01 |
|
46 |
45
|
ad2antrr |
|
47 |
46
|
simpld |
|
48 |
44 47
|
eqtr4d |
|
49 |
36 48
|
ifeqda |
|
50 |
28 49
|
eqtrd |
|
51 |
|
1elunit |
|
52 |
|
simpr |
|
53 |
52
|
breq1d |
|
54 |
|
simpl |
|
55 |
52
|
oveq2d |
|
56 |
54 55
|
oveq12d |
|
57 |
55
|
oveq1d |
|
58 |
54 57
|
oveq12d |
|
59 |
53 56 58
|
ifbieq12d |
|
60 |
|
ovex |
|
61 |
|
ovex |
|
62 |
60 61
|
ifex |
|
63 |
59 1 62
|
ovmpoa |
|
64 |
51 15 63
|
sylancr |
|
65 |
35
|
simprd |
|
66 |
43
|
simprd |
|
67 |
46
|
simprd |
|
68 |
66 67
|
eqtr4d |
|
69 |
65 68
|
ifeqda |
|
70 |
64 69
|
eqtrd |
|
71 |
2 4 13 50 70
|
isphtpyd |
|