Metamath Proof Explorer


Theorem phtpycc

Description: Concatenate two path homotopies. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses phtpycc.1 M = x 0 1 , y 0 1 if y 1 2 x K 2 y x L 2 y 1
phtpycc.3 φ F II Cn J
phtpycc.4 φ G II Cn J
phtpycc.5 φ H II Cn J
phtpycc.6 φ K F PHtpy J G
phtpycc.7 φ L G PHtpy J H
Assertion phtpycc φ M F PHtpy J H

Proof

Step Hyp Ref Expression
1 phtpycc.1 M = x 0 1 , y 0 1 if y 1 2 x K 2 y x L 2 y 1
2 phtpycc.3 φ F II Cn J
3 phtpycc.4 φ G II Cn J
4 phtpycc.5 φ H II Cn J
5 phtpycc.6 φ K F PHtpy J G
6 phtpycc.7 φ L G PHtpy J H
7 iitopon II TopOn 0 1
8 7 a1i φ II TopOn 0 1
9 2 3 phtpyhtpy φ F PHtpy J G F II Htpy J G
10 9 5 sseldd φ K F II Htpy J G
11 3 4 phtpyhtpy φ G PHtpy J H G II Htpy J H
12 11 6 sseldd φ L G II Htpy J H
13 1 8 2 3 4 10 12 htpycc φ M F II Htpy J H
14 0elunit 0 0 1
15 simpr φ s 0 1 s 0 1
16 simpr x = 0 y = s y = s
17 16 breq1d x = 0 y = s y 1 2 s 1 2
18 simpl x = 0 y = s x = 0
19 16 oveq2d x = 0 y = s 2 y = 2 s
20 18 19 oveq12d x = 0 y = s x K 2 y = 0 K 2 s
21 19 oveq1d x = 0 y = s 2 y 1 = 2 s 1
22 18 21 oveq12d x = 0 y = s x L 2 y 1 = 0 L 2 s 1
23 17 20 22 ifbieq12d x = 0 y = s if y 1 2 x K 2 y x L 2 y 1 = if s 1 2 0 K 2 s 0 L 2 s 1
24 ovex 0 K 2 s V
25 ovex 0 L 2 s 1 V
26 24 25 ifex if s 1 2 0 K 2 s 0 L 2 s 1 V
27 23 1 26 ovmpoa 0 0 1 s 0 1 0 M s = if s 1 2 0 K 2 s 0 L 2 s 1
28 14 15 27 sylancr φ s 0 1 0 M s = if s 1 2 0 K 2 s 0 L 2 s 1
29 simpll φ s 0 1 s 1 2 φ
30 elii1 s 0 1 2 s 0 1 s 1 2
31 iihalf1 s 0 1 2 2 s 0 1
32 30 31 sylbir s 0 1 s 1 2 2 s 0 1
33 32 adantll φ s 0 1 s 1 2 2 s 0 1
34 2 3 5 phtpyi φ 2 s 0 1 0 K 2 s = F 0 1 K 2 s = F 1
35 29 33 34 syl2anc φ s 0 1 s 1 2 0 K 2 s = F 0 1 K 2 s = F 1
36 35 simpld φ s 0 1 s 1 2 0 K 2 s = F 0
37 simpll φ s 0 1 ¬ s 1 2 φ
38 elii2 s 0 1 ¬ s 1 2 s 1 2 1
39 iihalf2 s 1 2 1 2 s 1 0 1
40 38 39 syl s 0 1 ¬ s 1 2 2 s 1 0 1
41 40 adantll φ s 0 1 ¬ s 1 2 2 s 1 0 1
42 3 4 6 phtpyi φ 2 s 1 0 1 0 L 2 s 1 = G 0 1 L 2 s 1 = G 1
43 37 41 42 syl2anc φ s 0 1 ¬ s 1 2 0 L 2 s 1 = G 0 1 L 2 s 1 = G 1
44 43 simpld φ s 0 1 ¬ s 1 2 0 L 2 s 1 = G 0
45 2 3 5 phtpy01 φ F 0 = G 0 F 1 = G 1
46 45 ad2antrr φ s 0 1 ¬ s 1 2 F 0 = G 0 F 1 = G 1
47 46 simpld φ s 0 1 ¬ s 1 2 F 0 = G 0
48 44 47 eqtr4d φ s 0 1 ¬ s 1 2 0 L 2 s 1 = F 0
49 36 48 ifeqda φ s 0 1 if s 1 2 0 K 2 s 0 L 2 s 1 = F 0
50 28 49 eqtrd φ s 0 1 0 M s = F 0
51 1elunit 1 0 1
52 simpr x = 1 y = s y = s
53 52 breq1d x = 1 y = s y 1 2 s 1 2
54 simpl x = 1 y = s x = 1
55 52 oveq2d x = 1 y = s 2 y = 2 s
56 54 55 oveq12d x = 1 y = s x K 2 y = 1 K 2 s
57 55 oveq1d x = 1 y = s 2 y 1 = 2 s 1
58 54 57 oveq12d x = 1 y = s x L 2 y 1 = 1 L 2 s 1
59 53 56 58 ifbieq12d x = 1 y = s if y 1 2 x K 2 y x L 2 y 1 = if s 1 2 1 K 2 s 1 L 2 s 1
60 ovex 1 K 2 s V
61 ovex 1 L 2 s 1 V
62 60 61 ifex if s 1 2 1 K 2 s 1 L 2 s 1 V
63 59 1 62 ovmpoa 1 0 1 s 0 1 1 M s = if s 1 2 1 K 2 s 1 L 2 s 1
64 51 15 63 sylancr φ s 0 1 1 M s = if s 1 2 1 K 2 s 1 L 2 s 1
65 35 simprd φ s 0 1 s 1 2 1 K 2 s = F 1
66 43 simprd φ s 0 1 ¬ s 1 2 1 L 2 s 1 = G 1
67 46 simprd φ s 0 1 ¬ s 1 2 F 1 = G 1
68 66 67 eqtr4d φ s 0 1 ¬ s 1 2 1 L 2 s 1 = F 1
69 65 68 ifeqda φ s 0 1 if s 1 2 1 K 2 s 1 L 2 s 1 = F 1
70 64 69 eqtrd φ s 0 1 1 M s = F 1
71 2 4 13 50 70 isphtpyd φ M F PHtpy J H