Description: Map the second half of II into II . (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | iihalf2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re | |
|
2 | remulcl | |
|
3 | 1 2 | mpan | |
4 | 1re | |
|
5 | resubcl | |
|
6 | 3 4 5 | sylancl | |
7 | 6 | 3ad2ant1 | |
8 | subge0 | |
|
9 | 3 4 8 | sylancl | |
10 | 2pos | |
|
11 | 1 10 | pm3.2i | |
12 | ledivmul | |
|
13 | 4 11 12 | mp3an13 | |
14 | 9 13 | bitr4d | |
15 | 14 | biimpar | |
16 | 15 | 3adant3 | |
17 | ax-1cn | |
|
18 | 17 | 2timesi | |
19 | 18 | a1i | |
20 | 19 | breq2d | |
21 | lemul2 | |
|
22 | 4 11 21 | mp3an23 | |
23 | lesubadd | |
|
24 | 4 4 23 | mp3an23 | |
25 | 3 24 | syl | |
26 | 20 22 25 | 3bitr4d | |
27 | 26 | biimpa | |
28 | 27 | 3adant2 | |
29 | 7 16 28 | 3jca | |
30 | halfre | |
|
31 | 30 4 | elicc2i | |
32 | elicc01 | |
|
33 | 29 31 32 | 3imtr4i | |