Metamath Proof Explorer


Theorem iihalf2

Description: Map the second half of II into II . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iihalf2 X1212X101

Proof

Step Hyp Ref Expression
1 2re 2
2 remulcl 2X2X
3 1 2 mpan X2X
4 1re 1
5 resubcl 2X12X1
6 3 4 5 sylancl X2X1
7 6 3ad2ant1 X12XX12X1
8 subge0 2X102X112X
9 3 4 8 sylancl X02X112X
10 2pos 0<2
11 1 10 pm3.2i 20<2
12 ledivmul 1X20<212X12X
13 4 11 12 mp3an13 X12X12X
14 9 13 bitr4d X02X112X
15 14 biimpar X12X02X1
16 15 3adant3 X12XX102X1
17 ax-1cn 1
18 17 2timesi 21=1+1
19 18 a1i X21=1+1
20 19 breq2d X2X212X1+1
21 lemul2 X120<2X12X21
22 4 11 21 mp3an23 XX12X21
23 lesubadd 2X112X112X1+1
24 4 4 23 mp3an23 2X2X112X1+1
25 3 24 syl X2X112X1+1
26 20 22 25 3bitr4d XX12X11
27 26 biimpa XX12X11
28 27 3adant2 X12XX12X11
29 7 16 28 3jca X12XX12X102X12X11
30 halfre 12
31 30 4 elicc2i X121X12XX1
32 elicc01 2X1012X102X12X11
33 29 31 32 3imtr4i X1212X101