Metamath Proof Explorer


Theorem elii2

Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014)

Ref Expression
Assertion elii2 X01¬X12X121

Proof

Step Hyp Ref Expression
1 elicc01 X01X0XX1
2 1 simp1bi X01X
3 2 adantr X01¬X12X
4 halfre 12
5 letric X12X1212X
6 2 4 5 sylancl X01X1212X
7 6 orcanai X01¬X1212X
8 1 simp3bi X01X1
9 8 adantr X01¬X12X1
10 1re 1
11 4 10 elicc2i X121X12XX1
12 3 7 9 11 syl3anbrc X01¬X12X121