Metamath Proof Explorer


Theorem iimulcl

Description: The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iimulcl A01B01AB01

Proof

Step Hyp Ref Expression
1 remulcl ABAB
2 1 3ad2antr1 AB0BB1AB
3 2 3ad2antl1 A0AA1B0BB1AB
4 mulge0 A0AB0B0AB
5 4 3adantr3 A0AB0BB10AB
6 5 3adantl3 A0AA1B0BB10AB
7 an6 A0AA1B0BB1AB0A0BA1B1
8 1re 1
9 lemul12a A0A1B0B1A1B1AB11
10 8 9 mpanr2 A0A1B0BA1B1AB11
11 8 10 mpanl2 A0AB0BA1B1AB11
12 11 an4s AB0A0BA1B1AB11
13 12 3impia AB0A0BA1B1AB11
14 7 13 sylbi A0AA1B0BB1AB11
15 1t1e1 11=1
16 14 15 breqtrdi A0AA1B0BB1AB1
17 3 6 16 3jca A0AA1B0BB1AB0ABAB1
18 elicc01 A01A0AA1
19 elicc01 B01B0BB1
20 18 19 anbi12i A01B01A0AA1B0BB1
21 elicc01 AB01AB0ABAB1
22 17 20 21 3imtr4i A01B01AB01