Metamath Proof Explorer


Theorem iimulcn

Description: Multiplication is a continuous function on the unit interval. (Contributed by Mario Carneiro, 8-Jun-2014)

Ref Expression
Assertion iimulcn x 0 1 , y 0 1 x y II × t II Cn II

Proof

Step Hyp Ref Expression
1 eqid TopOpen fld = TopOpen fld
2 1 dfii3 II = TopOpen fld 𝑡 0 1
3 1 cnfldtopon TopOpen fld TopOn
4 3 a1i TopOpen fld TopOn
5 unitssre 0 1
6 ax-resscn
7 5 6 sstri 0 1
8 7 a1i 0 1
9 ax-mulf × : ×
10 ffn × : × × Fn ×
11 9 10 ax-mp × Fn ×
12 fnov × Fn × × = x , y x y
13 11 12 mpbi × = x , y x y
14 1 mulcn × TopOpen fld × t TopOpen fld Cn TopOpen fld
15 13 14 eqeltrri x , y x y TopOpen fld × t TopOpen fld Cn TopOpen fld
16 15 a1i x , y x y TopOpen fld × t TopOpen fld Cn TopOpen fld
17 2 4 8 2 4 8 16 cnmpt2res x 0 1 , y 0 1 x y II × t II Cn TopOpen fld
18 17 mptru x 0 1 , y 0 1 x y II × t II Cn TopOpen fld
19 iimulcl x 0 1 y 0 1 x y 0 1
20 19 rgen2 x 0 1 y 0 1 x y 0 1
21 eqid x 0 1 , y 0 1 x y = x 0 1 , y 0 1 x y
22 21 fmpo x 0 1 y 0 1 x y 0 1 x 0 1 , y 0 1 x y : 0 1 × 0 1 0 1
23 frn x 0 1 , y 0 1 x y : 0 1 × 0 1 0 1 ran x 0 1 , y 0 1 x y 0 1
24 22 23 sylbi x 0 1 y 0 1 x y 0 1 ran x 0 1 , y 0 1 x y 0 1
25 20 24 ax-mp ran x 0 1 , y 0 1 x y 0 1
26 cnrest2 TopOpen fld TopOn ran x 0 1 , y 0 1 x y 0 1 0 1 x 0 1 , y 0 1 x y II × t II Cn TopOpen fld x 0 1 , y 0 1 x y II × t II Cn TopOpen fld 𝑡 0 1
27 3 25 7 26 mp3an x 0 1 , y 0 1 x y II × t II Cn TopOpen fld x 0 1 , y 0 1 x y II × t II Cn TopOpen fld 𝑡 0 1
28 18 27 mpbi x 0 1 , y 0 1 x y II × t II Cn TopOpen fld 𝑡 0 1
29 2 oveq2i II × t II Cn II = II × t II Cn TopOpen fld 𝑡 0 1
30 28 29 eleqtrri x 0 1 , y 0 1 x y II × t II Cn II