| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icoopnst.1 |
|
| 2 |
|
iooretop |
|
| 3 |
|
simp1 |
|
| 4 |
3
|
a1i |
|
| 5 |
|
ltm1 |
|
| 6 |
5
|
adantr |
|
| 7 |
|
peano2rem |
|
| 8 |
7
|
adantr |
|
| 9 |
|
ltletr |
|
| 10 |
9
|
3expb |
|
| 11 |
8 10
|
mpancom |
|
| 12 |
6 11
|
mpand |
|
| 13 |
12
|
impr |
|
| 14 |
13
|
3adantr3 |
|
| 15 |
14
|
ex |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
|
simp3 |
|
| 18 |
17
|
a1i |
|
| 19 |
4 16 18
|
3jcad |
|
| 20 |
|
simp2 |
|
| 21 |
20
|
a1i |
|
| 22 |
|
rexr |
|
| 23 |
|
elioc2 |
|
| 24 |
22 23
|
sylan |
|
| 25 |
24
|
biimpa |
|
| 26 |
|
ltleletr |
|
| 27 |
26
|
3expa |
|
| 28 |
27
|
an31s |
|
| 29 |
28
|
imp |
|
| 30 |
29
|
ancom2s |
|
| 31 |
30
|
an4s |
|
| 32 |
31
|
3adantr2 |
|
| 33 |
32
|
ex |
|
| 34 |
33
|
anasss |
|
| 35 |
34
|
3adantr2 |
|
| 36 |
35
|
adantll |
|
| 37 |
25 36
|
syldan |
|
| 38 |
4 21 37
|
3jcad |
|
| 39 |
19 38
|
jcad |
|
| 40 |
|
simpl1 |
|
| 41 |
|
simpr2 |
|
| 42 |
|
simpl3 |
|
| 43 |
40 41 42
|
3jca |
|
| 44 |
39 43
|
impbid1 |
|
| 45 |
|
simpll |
|
| 46 |
25
|
simp1d |
|
| 47 |
46
|
rexrd |
|
| 48 |
|
elico2 |
|
| 49 |
45 47 48
|
syl2anc |
|
| 50 |
|
elin |
|
| 51 |
7
|
rexrd |
|
| 52 |
51
|
ad2antrr |
|
| 53 |
|
elioo2 |
|
| 54 |
52 47 53
|
syl2anc |
|
| 55 |
|
elicc2 |
|
| 56 |
55
|
adantr |
|
| 57 |
54 56
|
anbi12d |
|
| 58 |
50 57
|
bitrid |
|
| 59 |
44 49 58
|
3bitr4d |
|
| 60 |
59
|
eqrdv |
|
| 61 |
|
ineq1 |
|
| 62 |
61
|
rspceeqv |
|
| 63 |
2 60 62
|
sylancr |
|
| 64 |
|
retop |
|
| 65 |
|
ovex |
|
| 66 |
|
elrest |
|
| 67 |
64 65 66
|
mp2an |
|
| 68 |
63 67
|
sylibr |
|
| 69 |
|
iccssre |
|
| 70 |
69
|
adantr |
|
| 71 |
|
eqid |
|
| 72 |
71 1
|
resubmet |
|
| 73 |
70 72
|
syl |
|
| 74 |
68 73
|
eleqtrrd |
|
| 75 |
74
|
ex |
|