Metamath Proof Explorer


Theorem resubmet

Description: The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses resubmet.1 R=topGenran.
resubmet.2 J=MetOpenabsA×A
Assertion resubmet AJ=R𝑡A

Proof

Step Hyp Ref Expression
1 resubmet.1 R=topGenran.
2 resubmet.2 J=MetOpenabsA×A
3 xpss12 AAA×A2
4 3 anidms AA×A2
5 4 resabs1d Aabs2A×A=absA×A
6 5 fveq2d AMetOpenabs2A×A=MetOpenabsA×A
7 2 6 eqtr4id AJ=MetOpenabs2A×A
8 eqid abs2=abs2
9 8 rexmet abs2∞Met
10 eqid abs2A×A=abs2A×A
11 eqid MetOpenabs2=MetOpenabs2
12 8 11 tgioo topGenran.=MetOpenabs2
13 1 12 eqtri R=MetOpenabs2
14 eqid MetOpenabs2A×A=MetOpenabs2A×A
15 10 13 14 metrest abs2∞MetAR𝑡A=MetOpenabs2A×A
16 9 15 mpan AR𝑡A=MetOpenabs2A×A
17 7 16 eqtr4d AJ=R𝑡A