Metamath Proof Explorer


Theorem resubmet

Description: The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses resubmet.1 𝑅 = ( topGen ‘ ran (,) )
resubmet.2 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) )
Assertion resubmet ( 𝐴 ⊆ ℝ → 𝐽 = ( 𝑅t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 resubmet.1 𝑅 = ( topGen ‘ ran (,) )
2 resubmet.2 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) )
3 xpss12 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝐴 × 𝐴 ) ⊆ ( ℝ × ℝ ) )
4 3 anidms ( 𝐴 ⊆ ℝ → ( 𝐴 × 𝐴 ) ⊆ ( ℝ × ℝ ) )
5 4 resabs1d ( 𝐴 ⊆ ℝ → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) )
6 5 fveq2d ( 𝐴 ⊆ ℝ → ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) )
7 2 6 eqtr4id ( 𝐴 ⊆ ℝ → 𝐽 = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) )
8 eqid ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) )
9 8 rexmet ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ )
10 eqid ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) )
11 eqid ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) )
12 8 11 tgioo ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) )
13 1 12 eqtri 𝑅 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) )
14 eqid ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) )
15 10 13 14 metrest ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑅t 𝐴 ) = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) )
16 9 15 mpan ( 𝐴 ⊆ ℝ → ( 𝑅t 𝐴 ) = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) )
17 7 16 eqtr4d ( 𝐴 ⊆ ℝ → 𝐽 = ( 𝑅t 𝐴 ) )