| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icoopnst.1 |
⊢ 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) |
| 2 |
|
iooretop |
⊢ ( ( 𝐴 − 1 ) (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) |
| 3 |
|
simp1 |
⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ∈ ℝ ) |
| 4 |
3
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ∈ ℝ ) ) |
| 5 |
|
ltm1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) < 𝐴 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝐴 − 1 ) < 𝐴 ) |
| 7 |
|
peano2rem |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) ∈ ℝ ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝐴 − 1 ) ∈ ℝ ) |
| 9 |
|
ltletr |
⊢ ( ( ( 𝐴 − 1 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( ( 𝐴 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑣 ) → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 10 |
9
|
3expb |
⊢ ( ( ( 𝐴 − 1 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) ) → ( ( ( 𝐴 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑣 ) → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 11 |
8 10
|
mpancom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( ( 𝐴 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑣 ) → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 12 |
6 11
|
mpand |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝐴 ≤ 𝑣 → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 13 |
12
|
impr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ) ) → ( 𝐴 − 1 ) < 𝑣 ) |
| 14 |
13
|
3adantr3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ) → ( 𝐴 − 1 ) < 𝑣 ) |
| 15 |
14
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 17 |
|
simp3 |
⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 < 𝐶 ) |
| 18 |
17
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 < 𝐶 ) ) |
| 19 |
4 16 18
|
3jcad |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ) ) |
| 20 |
|
simp2 |
⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝐴 ≤ 𝑣 ) |
| 21 |
20
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝐴 ≤ 𝑣 ) ) |
| 22 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 23 |
|
elioc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 24 |
22 23
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 25 |
24
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 26 |
|
ltleletr |
⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝑣 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝑣 ≤ 𝐵 ) ) |
| 27 |
26
|
3expa |
⊢ ( ( ( 𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝑣 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝑣 ≤ 𝐵 ) ) |
| 28 |
27
|
an31s |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑣 ∈ ℝ ) → ( ( 𝑣 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝑣 ≤ 𝐵 ) ) |
| 29 |
28
|
imp |
⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑣 ∈ ℝ ) ∧ ( 𝑣 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝑣 ≤ 𝐵 ) |
| 30 |
29
|
ancom2s |
⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑣 ∈ ℝ ) ∧ ( 𝐶 ≤ 𝐵 ∧ 𝑣 < 𝐶 ) ) → 𝑣 ≤ 𝐵 ) |
| 31 |
30
|
an4s |
⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝑣 < 𝐶 ) ) → 𝑣 ≤ 𝐵 ) |
| 32 |
31
|
3adantr2 |
⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ) → 𝑣 ≤ 𝐵 ) |
| 33 |
32
|
ex |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ≤ 𝐵 ) ) |
| 34 |
33
|
anasss |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≤ 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ≤ 𝐵 ) ) |
| 35 |
34
|
3adantr2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ≤ 𝐵 ) ) |
| 36 |
35
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ≤ 𝐵 ) ) |
| 37 |
25 36
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ≤ 𝐵 ) ) |
| 38 |
4 21 37
|
3jcad |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) |
| 39 |
19 38
|
jcad |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 40 |
|
simpl1 |
⊢ ( ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝑣 ∈ ℝ ) |
| 41 |
|
simpr2 |
⊢ ( ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝐴 ≤ 𝑣 ) |
| 42 |
|
simpl3 |
⊢ ( ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝑣 < 𝐶 ) |
| 43 |
40 41 42
|
3jca |
⊢ ( ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ) |
| 44 |
39 43
|
impbid1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ↔ ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 45 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 46 |
25
|
simp1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 47 |
46
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
| 48 |
|
elico2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ* ) → ( 𝑣 ∈ ( 𝐴 [,) 𝐶 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ) ) |
| 49 |
45 47 48
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 [,) 𝐶 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ) ) |
| 50 |
|
elin |
⊢ ( 𝑣 ∈ ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝑣 ∈ ( ( 𝐴 − 1 ) (,) 𝐶 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 51 |
7
|
rexrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) ∈ ℝ* ) |
| 52 |
51
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐴 − 1 ) ∈ ℝ* ) |
| 53 |
|
elioo2 |
⊢ ( ( ( 𝐴 − 1 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑣 ∈ ( ( 𝐴 − 1 ) (,) 𝐶 ) ↔ ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ) ) |
| 54 |
52 47 53
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑣 ∈ ( ( 𝐴 − 1 ) (,) 𝐶 ) ↔ ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ) ) |
| 55 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) |
| 57 |
54 56
|
anbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ( ( 𝐴 − 1 ) (,) 𝐶 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 58 |
50 57
|
bitrid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑣 ∈ ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 59 |
44 49 58
|
3bitr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 [,) 𝐶 ) ↔ 𝑣 ∈ ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 60 |
59
|
eqrdv |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐴 [,) 𝐶 ) = ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 61 |
|
ineq1 |
⊢ ( 𝑣 = ( ( 𝐴 − 1 ) (,) 𝐶 ) → ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 62 |
61
|
rspceeqv |
⊢ ( ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 𝐴 [,) 𝐶 ) = ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐴 [,) 𝐶 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 63 |
2 60 62
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐴 [,) 𝐶 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 64 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 65 |
|
ovex |
⊢ ( 𝐴 [,] 𝐵 ) ∈ V |
| 66 |
|
elrest |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( 𝐴 [,) 𝐶 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ↔ ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐴 [,) 𝐶 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 67 |
64 65 66
|
mp2an |
⊢ ( ( 𝐴 [,) 𝐶 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ↔ ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐴 [,) 𝐶 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 68 |
63 67
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐴 [,) 𝐶 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 69 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 71 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 72 |
71 1
|
resubmet |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 73 |
70 72
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 74 |
68 73
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐴 [,) 𝐶 ) ∈ 𝐽 ) |
| 75 |
74
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( 𝐴 [,) 𝐶 ) ∈ 𝐽 ) ) |