| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 2 |
1
|
dfii3 |
|- II = ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) |
| 3 |
1
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 4 |
3
|
a1i |
|- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 5 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
| 6 |
5
|
a1i |
|- ( T. -> ( 0 [,] 1 ) C_ CC ) |
| 7 |
1
|
mpomulcn |
|- ( x e. CC , y e. CC |-> ( x x. y ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 8 |
7
|
a1i |
|- ( T. -> ( x e. CC , y e. CC |-> ( x x. y ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 9 |
2 4 6 2 4 6 8
|
cnmpt2res |
|- ( T. -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 10 |
9
|
mptru |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) |
| 11 |
|
iimulcl |
|- ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( x x. y ) e. ( 0 [,] 1 ) ) |
| 12 |
11
|
rgen2 |
|- A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) |
| 13 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) |
| 14 |
13
|
fmpo |
|- ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) ) |
| 15 |
|
frn |
|- ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) -> ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) ) |
| 16 |
14 15
|
sylbi |
|- ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) -> ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) ) |
| 17 |
12 16
|
ax-mp |
|- ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) |
| 18 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ CC ) -> ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) ) |
| 19 |
3 17 5 18
|
mp3an |
|- ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
| 20 |
10 19
|
mpbi |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) |
| 21 |
2
|
oveq2i |
|- ( ( II tX II ) Cn II ) = ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) |
| 22 |
20 21
|
eleqtrri |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn II ) |