Metamath Proof Explorer


Theorem elii1

Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014)

Ref Expression
Assertion elii1 X012X01X12

Proof

Step Hyp Ref Expression
1 0re 0
2 halfre 12
3 1 2 elicc2i X012X0XX12
4 3 simp1bi X012X
5 2 a1i X01212
6 1re 1
7 6 a1i X0121
8 3 simp3bi X012X12
9 halflt1 12<1
10 2 6 9 ltleii 121
11 10 a1i X012121
12 4 5 7 8 11 letrd X012X1
13 12 pm4.71ri X012X1X012
14 ancom X1X012X012X1
15 an32 X0XX12X1X0XX1X12
16 df-3an X0XX12X0XX12
17 3 16 bitri X012X0XX12
18 17 anbi1i X012X1X0XX12X1
19 1 6 elicc2i X01X0XX1
20 df-3an X0XX1X0XX1
21 19 20 bitri X01X0XX1
22 21 anbi1i X01X12X0XX1X12
23 15 18 22 3bitr4i X012X1X01X12
24 14 23 bitri X1X012X01X12
25 13 24 bitri X012X01X12