Metamath Proof Explorer


Theorem phtpyhtpy

Description: A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φFIICnJ
isphtpy.3 φGIICnJ
Assertion phtpyhtpy φFPHtpyJGFIIHtpyJG

Proof

Step Hyp Ref Expression
1 isphtpy.2 φFIICnJ
2 isphtpy.3 φGIICnJ
3 1 2 isphtpy φhFPHtpyJGhFIIHtpyJGs010hs=F01hs=F1
4 simpl hFIIHtpyJGs010hs=F01hs=F1hFIIHtpyJG
5 3 4 syl6bi φhFPHtpyJGhFIIHtpyJG
6 5 ssrdv φFPHtpyJGFIIHtpyJG