Metamath Proof Explorer


Theorem phtpycn

Description: A path homotopy is a continuous function. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φFIICnJ
isphtpy.3 φGIICnJ
Assertion phtpycn φFPHtpyJGII×tIICnJ

Proof

Step Hyp Ref Expression
1 isphtpy.2 φFIICnJ
2 isphtpy.3 φGIICnJ
3 1 2 phtpyhtpy φFPHtpyJGFIIHtpyJG
4 iitopon IITopOn01
5 4 a1i φIITopOn01
6 5 1 2 htpycn φFIIHtpyJGII×tIICnJ
7 3 6 sstrd φFPHtpyJGII×tIICnJ