Metamath Proof Explorer


Theorem phtpycn

Description: A path homotopy is a continuous function. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 ( 𝜑𝐹 ∈ ( II Cn 𝐽 ) )
isphtpy.3 ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
Assertion phtpycn ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) )

Proof

Step Hyp Ref Expression
1 isphtpy.2 ( 𝜑𝐹 ∈ ( II Cn 𝐽 ) )
2 isphtpy.3 ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
3 1 2 phtpyhtpy ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) )
4 iitopon II ∈ ( TopOn ‘ ( 0 [,] 1 ) )
5 4 a1i ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) )
6 5 1 2 htpycn ( 𝜑 → ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) )
7 3 6 sstrd ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) )