Description: A path homotopy is a continuous function. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isphtpy.2 | ⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) | |
| isphtpy.3 | ⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) | ||
| Assertion | phtpycn | ⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphtpy.2 | ⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) | |
| 2 | isphtpy.3 | ⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) | |
| 3 | 1 2 | phtpyhtpy | ⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
| 4 | iitopon | ⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 6 | 5 1 2 | htpycn | ⊢ ( 𝜑 → ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) ) |
| 7 | 3 6 | sstrd | ⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) ) |