Metamath Proof Explorer


Theorem isphtpyd

Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φ F II Cn J
isphtpy.3 φ G II Cn J
isphtpyd.1 φ H F II Htpy J G
isphtpyd.2 φ s 0 1 0 H s = F 0
isphtpyd.3 φ s 0 1 1 H s = F 1
Assertion isphtpyd φ H F PHtpy J G

Proof

Step Hyp Ref Expression
1 isphtpy.2 φ F II Cn J
2 isphtpy.3 φ G II Cn J
3 isphtpyd.1 φ H F II Htpy J G
4 isphtpyd.2 φ s 0 1 0 H s = F 0
5 isphtpyd.3 φ s 0 1 1 H s = F 1
6 4 5 jca φ s 0 1 0 H s = F 0 1 H s = F 1
7 6 ralrimiva φ s 0 1 0 H s = F 0 1 H s = F 1
8 1 2 isphtpy φ H F PHtpy J G H F II Htpy J G s 0 1 0 H s = F 0 1 H s = F 1
9 3 7 8 mpbir2and φ H F PHtpy J G