Metamath Proof Explorer


Theorem isphtpyd

Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φFIICnJ
isphtpy.3 φGIICnJ
isphtpyd.1 φHFIIHtpyJG
isphtpyd.2 φs010Hs=F0
isphtpyd.3 φs011Hs=F1
Assertion isphtpyd φHFPHtpyJG

Proof

Step Hyp Ref Expression
1 isphtpy.2 φFIICnJ
2 isphtpy.3 φGIICnJ
3 isphtpyd.1 φHFIIHtpyJG
4 isphtpyd.2 φs010Hs=F0
5 isphtpyd.3 φs011Hs=F1
6 4 5 jca φs010Hs=F01Hs=F1
7 6 ralrimiva φs010Hs=F01Hs=F1
8 1 2 isphtpy φHFPHtpyJGHFIIHtpyJGs010Hs=F01Hs=F1
9 3 7 8 mpbir2and φHFPHtpyJG