Metamath Proof Explorer


Theorem isphtpy2d

Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φFIICnJ
isphtpy.3 φGIICnJ
isphtpy2d.1 φHII×tIICnJ
isphtpy2d.2 φs01sH0=Fs
isphtpy2d.3 φs01sH1=Gs
isphtpy2d.4 φs010Hs=F0
isphtpy2d.5 φs011Hs=F1
Assertion isphtpy2d φHFPHtpyJG

Proof

Step Hyp Ref Expression
1 isphtpy.2 φFIICnJ
2 isphtpy.3 φGIICnJ
3 isphtpy2d.1 φHII×tIICnJ
4 isphtpy2d.2 φs01sH0=Fs
5 isphtpy2d.3 φs01sH1=Gs
6 isphtpy2d.4 φs010Hs=F0
7 isphtpy2d.5 φs011Hs=F1
8 iitopon IITopOn01
9 8 a1i φIITopOn01
10 9 1 2 3 4 5 ishtpyd φHFIIHtpyJG
11 1 2 10 6 7 isphtpyd φHFPHtpyJG