Metamath Proof Explorer


Theorem phtpycom

Description: Given a homotopy from F to G , produce a homotopy from G to F . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φ F II Cn J
isphtpy.3 φ G II Cn J
phtpycom.6 K = x 0 1 , y 0 1 x H 1 y
phtpycom.7 φ H F PHtpy J G
Assertion phtpycom φ K G PHtpy J F

Proof

Step Hyp Ref Expression
1 isphtpy.2 φ F II Cn J
2 isphtpy.3 φ G II Cn J
3 phtpycom.6 K = x 0 1 , y 0 1 x H 1 y
4 phtpycom.7 φ H F PHtpy J G
5 iitopon II TopOn 0 1
6 5 a1i φ II TopOn 0 1
7 1 2 phtpyhtpy φ F PHtpy J G F II Htpy J G
8 7 4 sseldd φ H F II Htpy J G
9 6 1 2 3 8 htpycom φ K G II Htpy J F
10 0elunit 0 0 1
11 simpr φ t 0 1 t 0 1
12 oveq1 x = 0 x H 1 y = 0 H 1 y
13 oveq2 y = t 1 y = 1 t
14 13 oveq2d y = t 0 H 1 y = 0 H 1 t
15 ovex 0 H 1 t V
16 12 14 3 15 ovmpo 0 0 1 t 0 1 0 K t = 0 H 1 t
17 10 11 16 sylancr φ t 0 1 0 K t = 0 H 1 t
18 iirev t 0 1 1 t 0 1
19 1 2 4 phtpyi φ 1 t 0 1 0 H 1 t = F 0 1 H 1 t = F 1
20 18 19 sylan2 φ t 0 1 0 H 1 t = F 0 1 H 1 t = F 1
21 20 simpld φ t 0 1 0 H 1 t = F 0
22 1 2 4 phtpy01 φ F 0 = G 0 F 1 = G 1
23 22 adantr φ t 0 1 F 0 = G 0 F 1 = G 1
24 23 simpld φ t 0 1 F 0 = G 0
25 17 21 24 3eqtrd φ t 0 1 0 K t = G 0
26 1elunit 1 0 1
27 oveq1 x = 1 x H 1 y = 1 H 1 y
28 13 oveq2d y = t 1 H 1 y = 1 H 1 t
29 ovex 1 H 1 t V
30 27 28 3 29 ovmpo 1 0 1 t 0 1 1 K t = 1 H 1 t
31 26 11 30 sylancr φ t 0 1 1 K t = 1 H 1 t
32 20 simprd φ t 0 1 1 H 1 t = F 1
33 23 simprd φ t 0 1 F 1 = G 1
34 31 32 33 3eqtrd φ t 0 1 1 K t = G 1
35 2 1 9 25 34 isphtpyd φ K G PHtpy J F