Metamath Proof Explorer


Theorem phtpycom

Description: Given a homotopy from F to G , produce a homotopy from G to F . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φFIICnJ
isphtpy.3 φGIICnJ
phtpycom.6 K=x01,y01xH1y
phtpycom.7 φHFPHtpyJG
Assertion phtpycom φKGPHtpyJF

Proof

Step Hyp Ref Expression
1 isphtpy.2 φFIICnJ
2 isphtpy.3 φGIICnJ
3 phtpycom.6 K=x01,y01xH1y
4 phtpycom.7 φHFPHtpyJG
5 iitopon IITopOn01
6 5 a1i φIITopOn01
7 1 2 phtpyhtpy φFPHtpyJGFIIHtpyJG
8 7 4 sseldd φHFIIHtpyJG
9 6 1 2 3 8 htpycom φKGIIHtpyJF
10 0elunit 001
11 simpr φt01t01
12 oveq1 x=0xH1y=0H1y
13 oveq2 y=t1y=1t
14 13 oveq2d y=t0H1y=0H1t
15 ovex 0H1tV
16 12 14 3 15 ovmpo 001t010Kt=0H1t
17 10 11 16 sylancr φt010Kt=0H1t
18 iirev t011t01
19 1 2 4 phtpyi φ1t010H1t=F01H1t=F1
20 18 19 sylan2 φt010H1t=F01H1t=F1
21 20 simpld φt010H1t=F0
22 1 2 4 phtpy01 φF0=G0F1=G1
23 22 adantr φt01F0=G0F1=G1
24 23 simpld φt01F0=G0
25 17 21 24 3eqtrd φt010Kt=G0
26 1elunit 101
27 oveq1 x=1xH1y=1H1y
28 13 oveq2d y=t1H1y=1H1t
29 ovex 1H1tV
30 27 28 3 29 ovmpo 101t011Kt=1H1t
31 26 11 30 sylancr φt011Kt=1H1t
32 20 simprd φt011H1t=F1
33 23 simprd φt01F1=G1
34 31 32 33 3eqtrd φt011Kt=G1
35 2 1 9 25 34 isphtpyd φKGPHtpyJF