Metamath Proof Explorer


Theorem phtpyid

Description: A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses phtpyid.1 G = x 0 1 , y 0 1 F x
phtpyid.3 φ F II Cn J
Assertion phtpyid φ G F PHtpy J F

Proof

Step Hyp Ref Expression
1 phtpyid.1 G = x 0 1 , y 0 1 F x
2 phtpyid.3 φ F II Cn J
3 iitopon II TopOn 0 1
4 3 a1i φ II TopOn 0 1
5 1 4 2 htpyid φ G F II Htpy J F
6 0elunit 0 0 1
7 fveq2 x = 0 F x = F 0
8 eqidd y = s F 0 = F 0
9 fvex F 0 V
10 7 8 1 9 ovmpo 0 0 1 s 0 1 0 G s = F 0
11 6 10 mpan s 0 1 0 G s = F 0
12 11 adantl φ s 0 1 0 G s = F 0
13 1elunit 1 0 1
14 fveq2 x = 1 F x = F 1
15 eqidd y = s F 1 = F 1
16 fvex F 1 V
17 14 15 1 16 ovmpo 1 0 1 s 0 1 1 G s = F 1
18 13 17 mpan s 0 1 1 G s = F 1
19 18 adantl φ s 0 1 1 G s = F 1
20 2 2 5 12 19 isphtpyd φ G F PHtpy J F