Metamath Proof Explorer


Theorem phtpyid

Description: A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses phtpyid.1 G=x01,y01Fx
phtpyid.3 φFIICnJ
Assertion phtpyid φGFPHtpyJF

Proof

Step Hyp Ref Expression
1 phtpyid.1 G=x01,y01Fx
2 phtpyid.3 φFIICnJ
3 iitopon IITopOn01
4 3 a1i φIITopOn01
5 1 4 2 htpyid φGFIIHtpyJF
6 0elunit 001
7 fveq2 x=0Fx=F0
8 eqidd y=sF0=F0
9 fvex F0V
10 7 8 1 9 ovmpo 001s010Gs=F0
11 6 10 mpan s010Gs=F0
12 11 adantl φs010Gs=F0
13 1elunit 101
14 fveq2 x=1Fx=F1
15 eqidd y=sF1=F1
16 fvex F1V
17 14 15 1 16 ovmpo 101s011Gs=F1
18 13 17 mpan s011Gs=F1
19 18 adantl φs011Gs=F1
20 2 2 5 12 19 isphtpyd φGFPHtpyJF