Step |
Hyp |
Ref |
Expression |
1 |
|
phtpyid.1 |
⊢ 𝐺 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
2 |
|
phtpyid.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
3 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
4 |
3
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
5 |
1 4 2
|
htpyid |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐹 ) ) |
6 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 0 ) ) |
8 |
|
eqidd |
⊢ ( 𝑦 = 𝑠 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
9 |
|
fvex |
⊢ ( 𝐹 ‘ 0 ) ∈ V |
10 |
7 8 1 9
|
ovmpo |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐺 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
11 |
6 10
|
mpan |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 0 𝐺 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐺 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
13 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 1 ) ) |
15 |
|
eqidd |
⊢ ( 𝑦 = 𝑠 → ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
16 |
|
fvex |
⊢ ( 𝐹 ‘ 1 ) ∈ V |
17 |
14 15 1 16
|
ovmpo |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐺 𝑠 ) = ( 𝐹 ‘ 1 ) ) |
18 |
13 17
|
mpan |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 1 𝐺 𝑠 ) = ( 𝐹 ‘ 1 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐺 𝑠 ) = ( 𝐹 ‘ 1 ) ) |
20 |
2 2 5 12 19
|
isphtpyd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐹 ) ) |