| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phtpyco2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 2 |  | phtpyco2.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 3 |  | phtpyco2.p | ⊢ ( 𝜑  →  𝑃  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 4 |  | phtpyco2.h | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) | 
						
							| 5 |  | cnco | ⊢ ( ( 𝐹  ∈  ( II  Cn  𝐽 )  ∧  𝑃  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝑃  ∘  𝐹 )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 6 | 1 3 5 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∘  𝐹 )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 7 |  | cnco | ⊢ ( ( 𝐺  ∈  ( II  Cn  𝐽 )  ∧  𝑃  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝑃  ∘  𝐺 )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 8 | 2 3 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∘  𝐺 )  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 9 | 1 2 | phtpyhtpy | ⊢ ( 𝜑  →  ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 )  ⊆  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 ) ) | 
						
							| 10 | 9 4 | sseldd | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝐹 ( II  Htpy  𝐽 ) 𝐺 ) ) | 
						
							| 11 | 1 2 3 10 | htpyco2 | ⊢ ( 𝜑  →  ( 𝑃  ∘  𝐻 )  ∈  ( ( 𝑃  ∘  𝐹 ) ( II  Htpy  𝐾 ) ( 𝑃  ∘  𝐺 ) ) ) | 
						
							| 12 | 1 2 4 | phtpyi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 0 𝐻 𝑠 )  =  ( 𝐹 ‘ 0 )  ∧  ( 1 𝐻 𝑠 )  =  ( 𝐹 ‘ 1 ) ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐻 𝑠 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑃 ‘ ( 0 𝐻 𝑠 ) )  =  ( 𝑃 ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 15 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 16 |  | txtopon | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) )  →  ( II  ×t  II )  ∈  ( TopOn ‘ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 17 | 15 15 16 | mp2an | ⊢ ( II  ×t  II )  ∈  ( TopOn ‘ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 18 |  | cntop2 | ⊢ ( 𝐹  ∈  ( II  Cn  𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 19 | 1 18 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 20 |  | toptopon2 | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 22 | 1 2 | phtpycn | ⊢ ( 𝜑  →  ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 )  ⊆  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 23 | 22 4 | sseldd | ⊢ ( 𝜑  →  𝐻  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 24 |  | cnf2 | ⊢ ( ( ( II  ×t  II )  ∈  ( TopOn ‘ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  ∧  𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  𝐻  ∈  ( ( II  ×t  II )  Cn  𝐽 ) )  →  𝐻 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝐽 ) | 
						
							| 25 | 17 21 23 24 | mp3an2i | ⊢ ( 𝜑  →  𝐻 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝐽 ) | 
						
							| 26 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 27 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  𝑠  ∈  ( 0 [,] 1 ) ) | 
						
							| 28 |  | opelxpi | ⊢ ( ( 0  ∈  ( 0 [,] 1 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  〈 0 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 29 | 26 27 28 | sylancr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  〈 0 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 30 |  | fvco3 | ⊢ ( ( 𝐻 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝐽  ∧  〈 0 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( ( 𝑃  ∘  𝐻 ) ‘ 〈 0 ,  𝑠 〉 )  =  ( 𝑃 ‘ ( 𝐻 ‘ 〈 0 ,  𝑠 〉 ) ) ) | 
						
							| 31 | 25 29 30 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑃  ∘  𝐻 ) ‘ 〈 0 ,  𝑠 〉 )  =  ( 𝑃 ‘ ( 𝐻 ‘ 〈 0 ,  𝑠 〉 ) ) ) | 
						
							| 32 |  | df-ov | ⊢ ( 0 ( 𝑃  ∘  𝐻 ) 𝑠 )  =  ( ( 𝑃  ∘  𝐻 ) ‘ 〈 0 ,  𝑠 〉 ) | 
						
							| 33 |  | df-ov | ⊢ ( 0 𝐻 𝑠 )  =  ( 𝐻 ‘ 〈 0 ,  𝑠 〉 ) | 
						
							| 34 | 33 | fveq2i | ⊢ ( 𝑃 ‘ ( 0 𝐻 𝑠 ) )  =  ( 𝑃 ‘ ( 𝐻 ‘ 〈 0 ,  𝑠 〉 ) ) | 
						
							| 35 | 31 32 34 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 ( 𝑃  ∘  𝐻 ) 𝑠 )  =  ( 𝑃 ‘ ( 0 𝐻 𝑠 ) ) ) | 
						
							| 36 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 37 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 38 | 36 37 | cnf | ⊢ ( 𝐹  ∈  ( II  Cn  𝐽 )  →  𝐹 : ( 0 [,] 1 ) ⟶ ∪  𝐽 ) | 
						
							| 39 | 1 38 | syl | ⊢ ( 𝜑  →  𝐹 : ( 0 [,] 1 ) ⟶ ∪  𝐽 ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  𝐹 : ( 0 [,] 1 ) ⟶ ∪  𝐽 ) | 
						
							| 41 |  | fvco3 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ∪  𝐽  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑃  ∘  𝐹 ) ‘ 0 )  =  ( 𝑃 ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 42 | 40 26 41 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑃  ∘  𝐹 ) ‘ 0 )  =  ( 𝑃 ‘ ( 𝐹 ‘ 0 ) ) ) | 
						
							| 43 | 14 35 42 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 ( 𝑃  ∘  𝐻 ) 𝑠 )  =  ( ( 𝑃  ∘  𝐹 ) ‘ 0 ) ) | 
						
							| 44 | 12 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 𝐻 𝑠 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑃 ‘ ( 1 𝐻 𝑠 ) )  =  ( 𝑃 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 46 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 47 |  | opelxpi | ⊢ ( ( 1  ∈  ( 0 [,] 1 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  〈 1 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 48 | 46 27 47 | sylancr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  〈 1 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 49 |  | fvco3 | ⊢ ( ( 𝐻 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ ∪  𝐽  ∧  〈 1 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( ( 𝑃  ∘  𝐻 ) ‘ 〈 1 ,  𝑠 〉 )  =  ( 𝑃 ‘ ( 𝐻 ‘ 〈 1 ,  𝑠 〉 ) ) ) | 
						
							| 50 | 25 48 49 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑃  ∘  𝐻 ) ‘ 〈 1 ,  𝑠 〉 )  =  ( 𝑃 ‘ ( 𝐻 ‘ 〈 1 ,  𝑠 〉 ) ) ) | 
						
							| 51 |  | df-ov | ⊢ ( 1 ( 𝑃  ∘  𝐻 ) 𝑠 )  =  ( ( 𝑃  ∘  𝐻 ) ‘ 〈 1 ,  𝑠 〉 ) | 
						
							| 52 |  | df-ov | ⊢ ( 1 𝐻 𝑠 )  =  ( 𝐻 ‘ 〈 1 ,  𝑠 〉 ) | 
						
							| 53 | 52 | fveq2i | ⊢ ( 𝑃 ‘ ( 1 𝐻 𝑠 ) )  =  ( 𝑃 ‘ ( 𝐻 ‘ 〈 1 ,  𝑠 〉 ) ) | 
						
							| 54 | 50 51 53 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 ( 𝑃  ∘  𝐻 ) 𝑠 )  =  ( 𝑃 ‘ ( 1 𝐻 𝑠 ) ) ) | 
						
							| 55 |  | fvco3 | ⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ∪  𝐽  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑃  ∘  𝐹 ) ‘ 1 )  =  ( 𝑃 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 56 | 40 46 55 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑃  ∘  𝐹 ) ‘ 1 )  =  ( 𝑃 ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 57 | 45 54 56 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 ( 𝑃  ∘  𝐻 ) 𝑠 )  =  ( ( 𝑃  ∘  𝐹 ) ‘ 1 ) ) | 
						
							| 58 | 6 8 11 43 57 | isphtpyd | ⊢ ( 𝜑  →  ( 𝑃  ∘  𝐻 )  ∈  ( ( 𝑃  ∘  𝐹 ) ( PHtpy ‘ 𝐾 ) ( 𝑃  ∘  𝐺 ) ) ) |