Step |
Hyp |
Ref |
Expression |
1 |
|
phtpyco2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
2 |
|
phtpyco2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
3 |
|
phtpyco2.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
|
phtpyco2.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
5 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑃 ∘ 𝐹 ) ∈ ( II Cn 𝐾 ) ) |
6 |
1 3 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐹 ) ∈ ( II Cn 𝐾 ) ) |
7 |
|
cnco |
⊢ ( ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑃 ∘ 𝐺 ) ∈ ( II Cn 𝐾 ) ) |
8 |
2 3 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐺 ) ∈ ( II Cn 𝐾 ) ) |
9 |
1 2
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
10 |
9 4
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
11 |
1 2 3 10
|
htpyco2 |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐻 ) ∈ ( ( 𝑃 ∘ 𝐹 ) ( II Htpy 𝐾 ) ( 𝑃 ∘ 𝐺 ) ) ) |
12 |
1 2 4
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) ) |
13 |
12
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑃 ‘ ( 0 𝐻 𝑠 ) ) = ( 𝑃 ‘ ( 𝐹 ‘ 0 ) ) ) |
15 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
16 |
|
txtopon |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) → ( II ×t II ) ∈ ( TopOn ‘ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) |
17 |
15 15 16
|
mp2an |
⊢ ( II ×t II ) ∈ ( TopOn ‘ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
18 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐽 ∈ Top ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
20 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
21 |
19 20
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
22 |
1 2
|
phtpycn |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) ) |
23 |
22 4
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
24 |
|
cnf2 |
⊢ ( ( ( II ×t II ) ∈ ( TopOn ‘ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∧ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐻 ∈ ( ( II ×t II ) Cn 𝐽 ) ) → 𝐻 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝐽 ) |
25 |
17 21 23 24
|
mp3an2i |
⊢ ( 𝜑 → 𝐻 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝐽 ) |
26 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
28 |
|
opelxpi |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 0 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
29 |
26 27 28
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 0 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
30 |
|
fvco3 |
⊢ ( ( 𝐻 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝐽 ∧ 〈 0 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 0 , 𝑠 〉 ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 0 , 𝑠 〉 ) ) ) |
31 |
25 29 30
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 0 , 𝑠 〉 ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 0 , 𝑠 〉 ) ) ) |
32 |
|
df-ov |
⊢ ( 0 ( 𝑃 ∘ 𝐻 ) 𝑠 ) = ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 0 , 𝑠 〉 ) |
33 |
|
df-ov |
⊢ ( 0 𝐻 𝑠 ) = ( 𝐻 ‘ 〈 0 , 𝑠 〉 ) |
34 |
33
|
fveq2i |
⊢ ( 𝑃 ‘ ( 0 𝐻 𝑠 ) ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 0 , 𝑠 〉 ) ) |
35 |
31 32 34
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑃 ∘ 𝐻 ) 𝑠 ) = ( 𝑃 ‘ ( 0 𝐻 𝑠 ) ) ) |
36 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
37 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
38 |
36 37
|
cnf |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
39 |
1 38
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
41 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝑃 ∘ 𝐹 ) ‘ 0 ) = ( 𝑃 ‘ ( 𝐹 ‘ 0 ) ) ) |
42 |
40 26 41
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑃 ∘ 𝐹 ) ‘ 0 ) = ( 𝑃 ‘ ( 𝐹 ‘ 0 ) ) ) |
43 |
14 35 42
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑃 ∘ 𝐻 ) 𝑠 ) = ( ( 𝑃 ∘ 𝐹 ) ‘ 0 ) ) |
44 |
12
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) |
45 |
44
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑃 ‘ ( 1 𝐻 𝑠 ) ) = ( 𝑃 ‘ ( 𝐹 ‘ 1 ) ) ) |
46 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
47 |
|
opelxpi |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 1 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
48 |
46 27 47
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 1 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
49 |
|
fvco3 |
⊢ ( ( 𝐻 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ∪ 𝐽 ∧ 〈 1 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 1 , 𝑠 〉 ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 1 , 𝑠 〉 ) ) ) |
50 |
25 48 49
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 1 , 𝑠 〉 ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 1 , 𝑠 〉 ) ) ) |
51 |
|
df-ov |
⊢ ( 1 ( 𝑃 ∘ 𝐻 ) 𝑠 ) = ( ( 𝑃 ∘ 𝐻 ) ‘ 〈 1 , 𝑠 〉 ) |
52 |
|
df-ov |
⊢ ( 1 𝐻 𝑠 ) = ( 𝐻 ‘ 〈 1 , 𝑠 〉 ) |
53 |
52
|
fveq2i |
⊢ ( 𝑃 ‘ ( 1 𝐻 𝑠 ) ) = ( 𝑃 ‘ ( 𝐻 ‘ 〈 1 , 𝑠 〉 ) ) |
54 |
50 51 53
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑃 ∘ 𝐻 ) 𝑠 ) = ( 𝑃 ‘ ( 1 𝐻 𝑠 ) ) ) |
55 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝑃 ∘ 𝐹 ) ‘ 1 ) = ( 𝑃 ‘ ( 𝐹 ‘ 1 ) ) ) |
56 |
40 46 55
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑃 ∘ 𝐹 ) ‘ 1 ) = ( 𝑃 ‘ ( 𝐹 ‘ 1 ) ) ) |
57 |
45 54 56
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑃 ∘ 𝐻 ) 𝑠 ) = ( ( 𝑃 ∘ 𝐹 ) ‘ 1 ) ) |
58 |
6 8 11 43 57
|
isphtpyd |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐻 ) ∈ ( ( 𝑃 ∘ 𝐹 ) ( PHtpy ‘ 𝐾 ) ( 𝑃 ∘ 𝐺 ) ) ) |