| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isphtpy.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 2 |
|
isphtpy.3 |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
| 3 |
|
phtpycom.6 |
⊢ 𝐾 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐻 ( 1 − 𝑦 ) ) ) |
| 4 |
|
phtpycom.7 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
| 5 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 7 |
1 2
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ⊆ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
| 8 |
7 4
|
sseldd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
| 9 |
6 1 2 3 8
|
htpycom |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 ( II Htpy 𝐽 ) 𝐹 ) ) |
| 10 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
| 12 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 𝐻 ( 1 − 𝑦 ) ) = ( 0 𝐻 ( 1 − 𝑦 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑦 = 𝑡 → ( 1 − 𝑦 ) = ( 1 − 𝑡 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑦 = 𝑡 → ( 0 𝐻 ( 1 − 𝑦 ) ) = ( 0 𝐻 ( 1 − 𝑡 ) ) ) |
| 15 |
|
ovex |
⊢ ( 0 𝐻 ( 1 − 𝑡 ) ) ∈ V |
| 16 |
12 14 3 15
|
ovmpo |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 0 𝐾 𝑡 ) = ( 0 𝐻 ( 1 − 𝑡 ) ) ) |
| 17 |
10 11 16
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 0 𝐾 𝑡 ) = ( 0 𝐻 ( 1 − 𝑡 ) ) ) |
| 18 |
|
iirev |
⊢ ( 𝑡 ∈ ( 0 [,] 1 ) → ( 1 − 𝑡 ) ∈ ( 0 [,] 1 ) ) |
| 19 |
1 2 4
|
phtpyi |
⊢ ( ( 𝜑 ∧ ( 1 − 𝑡 ) ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐻 ( 1 − 𝑡 ) ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 ( 1 − 𝑡 ) ) = ( 𝐹 ‘ 1 ) ) ) |
| 20 |
18 19
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐻 ( 1 − 𝑡 ) ) = ( 𝐹 ‘ 0 ) ∧ ( 1 𝐻 ( 1 − 𝑡 ) ) = ( 𝐹 ‘ 1 ) ) ) |
| 21 |
20
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 ( 1 − 𝑡 ) ) = ( 𝐹 ‘ 0 ) ) |
| 22 |
1 2 4
|
phtpy01 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |
| 24 |
23
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ) |
| 25 |
17 21 24
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 0 𝐾 𝑡 ) = ( 𝐺 ‘ 0 ) ) |
| 26 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 27 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 𝐻 ( 1 − 𝑦 ) ) = ( 1 𝐻 ( 1 − 𝑦 ) ) ) |
| 28 |
13
|
oveq2d |
⊢ ( 𝑦 = 𝑡 → ( 1 𝐻 ( 1 − 𝑦 ) ) = ( 1 𝐻 ( 1 − 𝑡 ) ) ) |
| 29 |
|
ovex |
⊢ ( 1 𝐻 ( 1 − 𝑡 ) ) ∈ V |
| 30 |
27 28 3 29
|
ovmpo |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 1 𝐾 𝑡 ) = ( 1 𝐻 ( 1 − 𝑡 ) ) ) |
| 31 |
26 11 30
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 1 𝐾 𝑡 ) = ( 1 𝐻 ( 1 − 𝑡 ) ) ) |
| 32 |
20
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 ( 1 − 𝑡 ) ) = ( 𝐹 ‘ 1 ) ) |
| 33 |
23
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
| 34 |
31 32 33
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 1 𝐾 𝑡 ) = ( 𝐺 ‘ 1 ) ) |
| 35 |
2 1 9 25 34
|
isphtpyd |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐹 ) ) |