Metamath Proof Explorer


Theorem phtpy01

Description: Two path-homotopic paths have the same start and end point. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φ F II Cn J
isphtpy.3 φ G II Cn J
phtpyi.1 φ H F PHtpy J G
Assertion phtpy01 φ F 0 = G 0 F 1 = G 1

Proof

Step Hyp Ref Expression
1 isphtpy.2 φ F II Cn J
2 isphtpy.3 φ G II Cn J
3 phtpyi.1 φ H F PHtpy J G
4 1elunit 1 0 1
5 1 2 3 phtpyi φ 1 0 1 0 H 1 = F 0 1 H 1 = F 1
6 4 5 mpan2 φ 0 H 1 = F 0 1 H 1 = F 1
7 6 simpld φ 0 H 1 = F 0
8 0elunit 0 0 1
9 iitopon II TopOn 0 1
10 9 a1i φ II TopOn 0 1
11 1 2 phtpyhtpy φ F PHtpy J G F II Htpy J G
12 11 3 sseldd φ H F II Htpy J G
13 10 1 2 12 htpyi φ 0 0 1 0 H 0 = F 0 0 H 1 = G 0
14 8 13 mpan2 φ 0 H 0 = F 0 0 H 1 = G 0
15 14 simprd φ 0 H 1 = G 0
16 7 15 eqtr3d φ F 0 = G 0
17 6 simprd φ 1 H 1 = F 1
18 10 1 2 12 htpyi φ 1 0 1 1 H 0 = F 1 1 H 1 = G 1
19 4 18 mpan2 φ 1 H 0 = F 1 1 H 1 = G 1
20 19 simprd φ 1 H 1 = G 1
21 17 20 eqtr3d φ F 1 = G 1
22 16 21 jca φ F 0 = G 0 F 1 = G 1