Metamath Proof Explorer


Theorem phtpy01

Description: Two path-homotopic paths have the same start and end point. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φFIICnJ
isphtpy.3 φGIICnJ
phtpyi.1 φHFPHtpyJG
Assertion phtpy01 φF0=G0F1=G1

Proof

Step Hyp Ref Expression
1 isphtpy.2 φFIICnJ
2 isphtpy.3 φGIICnJ
3 phtpyi.1 φHFPHtpyJG
4 1elunit 101
5 1 2 3 phtpyi φ1010H1=F01H1=F1
6 4 5 mpan2 φ0H1=F01H1=F1
7 6 simpld φ0H1=F0
8 0elunit 001
9 iitopon IITopOn01
10 9 a1i φIITopOn01
11 1 2 phtpyhtpy φFPHtpyJGFIIHtpyJG
12 11 3 sseldd φHFIIHtpyJG
13 10 1 2 12 htpyi φ0010H0=F00H1=G0
14 8 13 mpan2 φ0H0=F00H1=G0
15 14 simprd φ0H1=G0
16 7 15 eqtr3d φF0=G0
17 6 simprd φ1H1=F1
18 10 1 2 12 htpyi φ1011H0=F11H1=G1
19 4 18 mpan2 φ1H0=F11H1=G1
20 19 simprd φ1H1=G1
21 17 20 eqtr3d φF1=G1
22 16 21 jca φF0=G0F1=G1