| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isphtpy.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 2 |
|
isphtpy.3 |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
| 3 |
|
isphtpy2d.1 |
⊢ ( 𝜑 → 𝐻 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 4 |
|
isphtpy2d.2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ) |
| 5 |
|
isphtpy2d.3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 6 |
|
isphtpy2d.4 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ) |
| 7 |
|
isphtpy2d.5 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) |
| 8 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 10 |
9 1 2 3 4 5
|
ishtpyd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
| 11 |
1 2 10 6 7
|
isphtpyd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |