Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isphtpy.2 | ⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) | |
isphtpy.3 | ⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) | ||
isphtpy2d.1 | ⊢ ( 𝜑 → 𝐻 ∈ ( ( II ×t II ) Cn 𝐽 ) ) | ||
isphtpy2d.2 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ) | ||
isphtpy2d.3 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) | ||
isphtpy2d.4 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ) | ||
isphtpy2d.5 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) | ||
Assertion | isphtpy2d | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isphtpy.2 | ⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) | |
2 | isphtpy.3 | ⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) | |
3 | isphtpy2d.1 | ⊢ ( 𝜑 → 𝐻 ∈ ( ( II ×t II ) Cn 𝐽 ) ) | |
4 | isphtpy2d.2 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ 𝑠 ) ) | |
5 | isphtpy2d.3 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 1 ) = ( 𝐺 ‘ 𝑠 ) ) | |
6 | isphtpy2d.4 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ 0 ) ) | |
7 | isphtpy2d.5 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ 1 ) ) | |
8 | iitopon | ⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) | |
9 | 8 | a1i | ⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
10 | 9 1 2 3 4 5 | ishtpyd | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( II Htpy 𝐽 ) 𝐺 ) ) |
11 | 1 2 10 6 7 | isphtpyd | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |