| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phtpcco2.f |
⊢ ( 𝜑 → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ) |
| 2 |
|
phtpcco2.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 3 |
|
isphtpc |
⊢ ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) ) |
| 4 |
1 3
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) ) |
| 5 |
4
|
simp1d |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 6 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑃 ∘ 𝐹 ) ∈ ( II Cn 𝐾 ) ) |
| 7 |
5 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐹 ) ∈ ( II Cn 𝐾 ) ) |
| 8 |
4
|
simp2d |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
| 9 |
|
cnco |
⊢ ( ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑃 ∘ 𝐺 ) ∈ ( II Cn 𝐾 ) ) |
| 10 |
8 2 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐺 ) ∈ ( II Cn 𝐾 ) ) |
| 11 |
4
|
simp3d |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) |
| 12 |
|
n0 |
⊢ ( ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
| 13 |
11 12
|
sylib |
⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
| 14 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → 𝐺 ∈ ( II Cn 𝐽 ) ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → 𝑓 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
| 18 |
14 15 16 17
|
phtpyco2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → ( 𝑃 ∘ 𝑓 ) ∈ ( ( 𝑃 ∘ 𝐹 ) ( PHtpy ‘ 𝐾 ) ( 𝑃 ∘ 𝐺 ) ) ) |
| 19 |
18
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → ( ( 𝑃 ∘ 𝐹 ) ( PHtpy ‘ 𝐾 ) ( 𝑃 ∘ 𝐺 ) ) ≠ ∅ ) |
| 20 |
13 19
|
exlimddv |
⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝐹 ) ( PHtpy ‘ 𝐾 ) ( 𝑃 ∘ 𝐺 ) ) ≠ ∅ ) |
| 21 |
|
isphtpc |
⊢ ( ( 𝑃 ∘ 𝐹 ) ( ≃ph ‘ 𝐾 ) ( 𝑃 ∘ 𝐺 ) ↔ ( ( 𝑃 ∘ 𝐹 ) ∈ ( II Cn 𝐾 ) ∧ ( 𝑃 ∘ 𝐺 ) ∈ ( II Cn 𝐾 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ( PHtpy ‘ 𝐾 ) ( 𝑃 ∘ 𝐺 ) ) ≠ ∅ ) ) |
| 22 |
7 10 20 21
|
syl3anbrc |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝐹 ) ( ≃ph ‘ 𝐾 ) ( 𝑃 ∘ 𝐺 ) ) |