Step |
Hyp |
Ref |
Expression |
1 |
|
reparpht.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
reparpht.3 |
|- ( ph -> G e. ( II Cn II ) ) |
3 |
|
reparpht.4 |
|- ( ph -> ( G ` 0 ) = 0 ) |
4 |
|
reparpht.5 |
|- ( ph -> ( G ` 1 ) = 1 ) |
5 |
|
reparphti.6 |
|- H = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) ) |
6 |
|
cnco |
|- ( ( G e. ( II Cn II ) /\ F e. ( II Cn J ) ) -> ( F o. G ) e. ( II Cn J ) ) |
7 |
2 1 6
|
syl2anc |
|- ( ph -> ( F o. G ) e. ( II Cn J ) ) |
8 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
9 |
8
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
10 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
11 |
10
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
12 |
|
cnrest2r |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) C_ ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
13 |
11 12
|
mp1i |
|- ( ph -> ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) C_ ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
14 |
9 9
|
cnmpt2nd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> y ) e. ( ( II tX II ) Cn II ) ) |
15 |
|
iirevcn |
|- ( z e. ( 0 [,] 1 ) |-> ( 1 - z ) ) e. ( II Cn II ) |
16 |
15
|
a1i |
|- ( ph -> ( z e. ( 0 [,] 1 ) |-> ( 1 - z ) ) e. ( II Cn II ) ) |
17 |
|
oveq2 |
|- ( z = y -> ( 1 - z ) = ( 1 - y ) ) |
18 |
9 9 14 9 16 17
|
cnmpt21 |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( 1 - y ) ) e. ( ( II tX II ) Cn II ) ) |
19 |
10
|
dfii3 |
|- II = ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) |
20 |
19
|
oveq2i |
|- ( ( II tX II ) Cn II ) = ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) |
21 |
18 20
|
eleqtrdi |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( 1 - y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
22 |
13 21
|
sseldd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( 1 - y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
23 |
9 9
|
cnmpt1st |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> x ) e. ( ( II tX II ) Cn II ) ) |
24 |
9 9 23 2
|
cnmpt21f |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( G ` x ) ) e. ( ( II tX II ) Cn II ) ) |
25 |
24 20
|
eleqtrdi |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( G ` x ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
26 |
13 25
|
sseldd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( G ` x ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
27 |
10
|
mulcn |
|- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
28 |
27
|
a1i |
|- ( ph -> x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
29 |
9 9 22 26 28
|
cnmpt22f |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( 1 - y ) x. ( G ` x ) ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
30 |
14 20
|
eleqtrdi |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> y ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
31 |
13 30
|
sseldd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> y ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
32 |
23 20
|
eleqtrdi |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> x ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
33 |
13 32
|
sseldd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> x ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
34 |
9 9 31 33 28
|
cnmpt22f |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( y x. x ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
35 |
10
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
36 |
35
|
a1i |
|- ( ph -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
37 |
9 9 29 34 36
|
cnmpt22f |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
38 |
10
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
39 |
38
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
40 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
41 |
40 40
|
cnf |
|- ( G e. ( II Cn II ) -> G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) ) |
42 |
2 41
|
syl |
|- ( ph -> G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) ) |
43 |
42
|
ffvelrnda |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( G ` x ) e. ( 0 [,] 1 ) ) |
44 |
43
|
adantrr |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( G ` x ) e. ( 0 [,] 1 ) ) |
45 |
|
simprl |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> x e. ( 0 [,] 1 ) ) |
46 |
|
simprr |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> y e. ( 0 [,] 1 ) ) |
47 |
|
0re |
|- 0 e. RR |
48 |
|
1re |
|- 1 e. RR |
49 |
|
icccvx |
|- ( ( 0 e. RR /\ 1 e. RR ) -> ( ( ( G ` x ) e. ( 0 [,] 1 ) /\ x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) e. ( 0 [,] 1 ) ) ) |
50 |
47 48 49
|
mp2an |
|- ( ( ( G ` x ) e. ( 0 [,] 1 ) /\ x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) e. ( 0 [,] 1 ) ) |
51 |
44 45 46 50
|
syl3anc |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) e. ( 0 [,] 1 ) ) |
52 |
51
|
ralrimivva |
|- ( ph -> A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) e. ( 0 [,] 1 ) ) |
53 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) |
54 |
53
|
fmpo |
|- ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) e. ( 0 [,] 1 ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) ) |
55 |
52 54
|
sylib |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) ) |
56 |
55
|
frnd |
|- ( ph -> ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) C_ ( 0 [,] 1 ) ) |
57 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
58 |
|
ax-resscn |
|- RR C_ CC |
59 |
57 58
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
60 |
59
|
a1i |
|- ( ph -> ( 0 [,] 1 ) C_ CC ) |
61 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ CC ) -> ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) ) |
62 |
39 56 60 61
|
syl3anc |
|- ( ph -> ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) ) |
63 |
37 62
|
mpbid |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
64 |
63 20
|
eleqtrrdi |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn II ) ) |
65 |
9 9 64 1
|
cnmpt21f |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) ) e. ( ( II tX II ) Cn J ) ) |
66 |
5 65
|
eqeltrid |
|- ( ph -> H e. ( ( II tX II ) Cn J ) ) |
67 |
42
|
ffvelrnda |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( G ` s ) e. ( 0 [,] 1 ) ) |
68 |
59 67
|
sselid |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( G ` s ) e. CC ) |
69 |
68
|
mulid2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 x. ( G ` s ) ) = ( G ` s ) ) |
70 |
59
|
sseli |
|- ( s e. ( 0 [,] 1 ) -> s e. CC ) |
71 |
70
|
adantl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> s e. CC ) |
72 |
71
|
mul02d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 x. s ) = 0 ) |
73 |
69 72
|
oveq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) = ( ( G ` s ) + 0 ) ) |
74 |
68
|
addid1d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( G ` s ) + 0 ) = ( G ` s ) ) |
75 |
73 74
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) = ( G ` s ) ) |
76 |
75
|
fveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) = ( F ` ( G ` s ) ) ) |
77 |
|
simpr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> s e. ( 0 [,] 1 ) ) |
78 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
79 |
|
simpr |
|- ( ( x = s /\ y = 0 ) -> y = 0 ) |
80 |
79
|
oveq2d |
|- ( ( x = s /\ y = 0 ) -> ( 1 - y ) = ( 1 - 0 ) ) |
81 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
82 |
80 81
|
eqtrdi |
|- ( ( x = s /\ y = 0 ) -> ( 1 - y ) = 1 ) |
83 |
|
simpl |
|- ( ( x = s /\ y = 0 ) -> x = s ) |
84 |
83
|
fveq2d |
|- ( ( x = s /\ y = 0 ) -> ( G ` x ) = ( G ` s ) ) |
85 |
82 84
|
oveq12d |
|- ( ( x = s /\ y = 0 ) -> ( ( 1 - y ) x. ( G ` x ) ) = ( 1 x. ( G ` s ) ) ) |
86 |
79 83
|
oveq12d |
|- ( ( x = s /\ y = 0 ) -> ( y x. x ) = ( 0 x. s ) ) |
87 |
85 86
|
oveq12d |
|- ( ( x = s /\ y = 0 ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) = ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) |
88 |
87
|
fveq2d |
|- ( ( x = s /\ y = 0 ) -> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) = ( F ` ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) ) |
89 |
|
fvex |
|- ( F ` ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) e. _V |
90 |
88 5 89
|
ovmpoa |
|- ( ( s e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( F ` ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) ) |
91 |
77 78 90
|
sylancl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( F ` ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) ) |
92 |
|
fvco3 |
|- ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` s ) = ( F ` ( G ` s ) ) ) |
93 |
42 92
|
sylan |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` s ) = ( F ` ( G ` s ) ) ) |
94 |
76 91 93
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( ( F o. G ) ` s ) ) |
95 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
96 |
|
simpr |
|- ( ( x = s /\ y = 1 ) -> y = 1 ) |
97 |
96
|
oveq2d |
|- ( ( x = s /\ y = 1 ) -> ( 1 - y ) = ( 1 - 1 ) ) |
98 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
99 |
97 98
|
eqtrdi |
|- ( ( x = s /\ y = 1 ) -> ( 1 - y ) = 0 ) |
100 |
|
simpl |
|- ( ( x = s /\ y = 1 ) -> x = s ) |
101 |
100
|
fveq2d |
|- ( ( x = s /\ y = 1 ) -> ( G ` x ) = ( G ` s ) ) |
102 |
99 101
|
oveq12d |
|- ( ( x = s /\ y = 1 ) -> ( ( 1 - y ) x. ( G ` x ) ) = ( 0 x. ( G ` s ) ) ) |
103 |
96 100
|
oveq12d |
|- ( ( x = s /\ y = 1 ) -> ( y x. x ) = ( 1 x. s ) ) |
104 |
102 103
|
oveq12d |
|- ( ( x = s /\ y = 1 ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) = ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) |
105 |
104
|
fveq2d |
|- ( ( x = s /\ y = 1 ) -> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) = ( F ` ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) ) |
106 |
|
fvex |
|- ( F ` ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) e. _V |
107 |
105 5 106
|
ovmpoa |
|- ( ( s e. ( 0 [,] 1 ) /\ 1 e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( F ` ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) ) |
108 |
77 95 107
|
sylancl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( F ` ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) ) |
109 |
68
|
mul02d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 x. ( G ` s ) ) = 0 ) |
110 |
71
|
mulid2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 x. s ) = s ) |
111 |
109 110
|
oveq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) = ( 0 + s ) ) |
112 |
71
|
addid2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 + s ) = s ) |
113 |
111 112
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) = s ) |
114 |
113
|
fveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) = ( F ` s ) ) |
115 |
108 114
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( F ` s ) ) |
116 |
3
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( G ` 0 ) = 0 ) |
117 |
116
|
oveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. ( G ` 0 ) ) = ( ( 1 - s ) x. 0 ) ) |
118 |
|
ax-1cn |
|- 1 e. CC |
119 |
|
subcl |
|- ( ( 1 e. CC /\ s e. CC ) -> ( 1 - s ) e. CC ) |
120 |
118 71 119
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 - s ) e. CC ) |
121 |
120
|
mul01d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. 0 ) = 0 ) |
122 |
117 121
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. ( G ` 0 ) ) = 0 ) |
123 |
71
|
mul01d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s x. 0 ) = 0 ) |
124 |
122 123
|
oveq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) = ( 0 + 0 ) ) |
125 |
|
00id |
|- ( 0 + 0 ) = 0 |
126 |
124 125
|
eqtrdi |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) = 0 ) |
127 |
126
|
fveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) = ( F ` 0 ) ) |
128 |
|
simpr |
|- ( ( x = 0 /\ y = s ) -> y = s ) |
129 |
128
|
oveq2d |
|- ( ( x = 0 /\ y = s ) -> ( 1 - y ) = ( 1 - s ) ) |
130 |
|
simpl |
|- ( ( x = 0 /\ y = s ) -> x = 0 ) |
131 |
130
|
fveq2d |
|- ( ( x = 0 /\ y = s ) -> ( G ` x ) = ( G ` 0 ) ) |
132 |
129 131
|
oveq12d |
|- ( ( x = 0 /\ y = s ) -> ( ( 1 - y ) x. ( G ` x ) ) = ( ( 1 - s ) x. ( G ` 0 ) ) ) |
133 |
128 130
|
oveq12d |
|- ( ( x = 0 /\ y = s ) -> ( y x. x ) = ( s x. 0 ) ) |
134 |
132 133
|
oveq12d |
|- ( ( x = 0 /\ y = s ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) = ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) |
135 |
134
|
fveq2d |
|- ( ( x = 0 /\ y = s ) -> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) = ( F ` ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) ) |
136 |
|
fvex |
|- ( F ` ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) e. _V |
137 |
135 5 136
|
ovmpoa |
|- ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) ) |
138 |
78 77 137
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) ) |
139 |
|
fvco3 |
|- ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` 0 ) = ( F ` ( G ` 0 ) ) ) |
140 |
42 78 139
|
sylancl |
|- ( ph -> ( ( F o. G ) ` 0 ) = ( F ` ( G ` 0 ) ) ) |
141 |
3
|
fveq2d |
|- ( ph -> ( F ` ( G ` 0 ) ) = ( F ` 0 ) ) |
142 |
140 141
|
eqtrd |
|- ( ph -> ( ( F o. G ) ` 0 ) = ( F ` 0 ) ) |
143 |
142
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` 0 ) = ( F ` 0 ) ) |
144 |
127 138 143
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( ( F o. G ) ` 0 ) ) |
145 |
4
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( G ` 1 ) = 1 ) |
146 |
145
|
oveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. ( G ` 1 ) ) = ( ( 1 - s ) x. 1 ) ) |
147 |
120
|
mulid1d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. 1 ) = ( 1 - s ) ) |
148 |
146 147
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. ( G ` 1 ) ) = ( 1 - s ) ) |
149 |
71
|
mulid1d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s x. 1 ) = s ) |
150 |
148 149
|
oveq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) = ( ( 1 - s ) + s ) ) |
151 |
|
npcan |
|- ( ( 1 e. CC /\ s e. CC ) -> ( ( 1 - s ) + s ) = 1 ) |
152 |
118 71 151
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) + s ) = 1 ) |
153 |
150 152
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) = 1 ) |
154 |
153
|
fveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) = ( F ` 1 ) ) |
155 |
|
simpr |
|- ( ( x = 1 /\ y = s ) -> y = s ) |
156 |
155
|
oveq2d |
|- ( ( x = 1 /\ y = s ) -> ( 1 - y ) = ( 1 - s ) ) |
157 |
|
simpl |
|- ( ( x = 1 /\ y = s ) -> x = 1 ) |
158 |
157
|
fveq2d |
|- ( ( x = 1 /\ y = s ) -> ( G ` x ) = ( G ` 1 ) ) |
159 |
156 158
|
oveq12d |
|- ( ( x = 1 /\ y = s ) -> ( ( 1 - y ) x. ( G ` x ) ) = ( ( 1 - s ) x. ( G ` 1 ) ) ) |
160 |
155 157
|
oveq12d |
|- ( ( x = 1 /\ y = s ) -> ( y x. x ) = ( s x. 1 ) ) |
161 |
159 160
|
oveq12d |
|- ( ( x = 1 /\ y = s ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) = ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) |
162 |
161
|
fveq2d |
|- ( ( x = 1 /\ y = s ) -> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) = ( F ` ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) ) |
163 |
|
fvex |
|- ( F ` ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) e. _V |
164 |
162 5 163
|
ovmpoa |
|- ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) ) |
165 |
95 77 164
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) ) |
166 |
|
fvco3 |
|- ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) /\ 1 e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` 1 ) = ( F ` ( G ` 1 ) ) ) |
167 |
42 95 166
|
sylancl |
|- ( ph -> ( ( F o. G ) ` 1 ) = ( F ` ( G ` 1 ) ) ) |
168 |
4
|
fveq2d |
|- ( ph -> ( F ` ( G ` 1 ) ) = ( F ` 1 ) ) |
169 |
167 168
|
eqtrd |
|- ( ph -> ( ( F o. G ) ` 1 ) = ( F ` 1 ) ) |
170 |
169
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` 1 ) = ( F ` 1 ) ) |
171 |
154 165 170
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( ( F o. G ) ` 1 ) ) |
172 |
7 1 66 94 115 144 171
|
isphtpy2d |
|- ( ph -> H e. ( ( F o. G ) ( PHtpy ` J ) F ) ) |