Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpc |
⊢ ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) ) |
2 |
|
n0 |
⊢ ( ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ↔ ∃ ℎ ℎ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
3 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ℎ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
4 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ℎ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → 𝐺 ∈ ( II Cn 𝐽 ) ) |
5 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ℎ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → ℎ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
6 |
3 4 5
|
phtpy01 |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ℎ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |
7 |
6
|
ex |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) → ( ℎ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) ) |
8 |
7
|
exlimdv |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) → ( ∃ ℎ ℎ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) ) |
9 |
2 8
|
syl5bi |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) → ( ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) ) |
10 |
9
|
3impia |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |
11 |
1 10
|
sylbi |
⊢ ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |