Metamath Proof Explorer


Theorem phtpc01

Description: Path homotopic paths have the same endpoints. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion phtpc01 ( 𝐹 ( ≃ph𝐽 ) 𝐺 → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) )

Proof

Step Hyp Ref Expression
1 isphtpc ( 𝐹 ( ≃ph𝐽 ) 𝐺 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) )
2 n0 ( ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ↔ ∃ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) )
3 simpll ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → 𝐹 ∈ ( II Cn 𝐽 ) )
4 simplr ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → 𝐺 ∈ ( II Cn 𝐽 ) )
5 simpr ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) )
6 3 4 5 phtpy01 ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) )
7 6 ex ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) → ( ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) )
8 7 exlimdv ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) → ( ∃ ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) )
9 2 8 syl5bi ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) → ( ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) )
10 9 3impia ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) )
11 1 10 sylbi ( 𝐹 ( ≃ph𝐽 ) 𝐺 → ( ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) )