Step |
Hyp |
Ref |
Expression |
1 |
|
isphtpc |
|- ( F ( ~=ph ` J ) G <-> ( F e. ( II Cn J ) /\ G e. ( II Cn J ) /\ ( F ( PHtpy ` J ) G ) =/= (/) ) ) |
2 |
|
n0 |
|- ( ( F ( PHtpy ` J ) G ) =/= (/) <-> E. h h e. ( F ( PHtpy ` J ) G ) ) |
3 |
|
simpll |
|- ( ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) ) /\ h e. ( F ( PHtpy ` J ) G ) ) -> F e. ( II Cn J ) ) |
4 |
|
simplr |
|- ( ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) ) /\ h e. ( F ( PHtpy ` J ) G ) ) -> G e. ( II Cn J ) ) |
5 |
|
simpr |
|- ( ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) ) /\ h e. ( F ( PHtpy ` J ) G ) ) -> h e. ( F ( PHtpy ` J ) G ) ) |
6 |
3 4 5
|
phtpy01 |
|- ( ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) ) /\ h e. ( F ( PHtpy ` J ) G ) ) -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) |
7 |
6
|
ex |
|- ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) ) -> ( h e. ( F ( PHtpy ` J ) G ) -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) ) |
8 |
7
|
exlimdv |
|- ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) ) -> ( E. h h e. ( F ( PHtpy ` J ) G ) -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) ) |
9 |
2 8
|
syl5bi |
|- ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) ) -> ( ( F ( PHtpy ` J ) G ) =/= (/) -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) ) |
10 |
9
|
3impia |
|- ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) /\ ( F ( PHtpy ` J ) G ) =/= (/) ) -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) |
11 |
1 10
|
sylbi |
|- ( F ( ~=ph ` J ) G -> ( ( F ` 0 ) = ( G ` 0 ) /\ ( F ` 1 ) = ( G ` 1 ) ) ) |