| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcohtpy.4 |
|- ( ph -> ( F ` 1 ) = ( G ` 0 ) ) |
| 2 |
|
pcohtpy.5 |
|- ( ph -> F ( ~=ph ` J ) H ) |
| 3 |
|
pcohtpy.6 |
|- ( ph -> G ( ~=ph ` J ) K ) |
| 4 |
|
isphtpc |
|- ( F ( ~=ph ` J ) H <-> ( F e. ( II Cn J ) /\ H e. ( II Cn J ) /\ ( F ( PHtpy ` J ) H ) =/= (/) ) ) |
| 5 |
2 4
|
sylib |
|- ( ph -> ( F e. ( II Cn J ) /\ H e. ( II Cn J ) /\ ( F ( PHtpy ` J ) H ) =/= (/) ) ) |
| 6 |
5
|
simp1d |
|- ( ph -> F e. ( II Cn J ) ) |
| 7 |
|
isphtpc |
|- ( G ( ~=ph ` J ) K <-> ( G e. ( II Cn J ) /\ K e. ( II Cn J ) /\ ( G ( PHtpy ` J ) K ) =/= (/) ) ) |
| 8 |
3 7
|
sylib |
|- ( ph -> ( G e. ( II Cn J ) /\ K e. ( II Cn J ) /\ ( G ( PHtpy ` J ) K ) =/= (/) ) ) |
| 9 |
8
|
simp1d |
|- ( ph -> G e. ( II Cn J ) ) |
| 10 |
6 9 1
|
pcocn |
|- ( ph -> ( F ( *p ` J ) G ) e. ( II Cn J ) ) |
| 11 |
5
|
simp2d |
|- ( ph -> H e. ( II Cn J ) ) |
| 12 |
8
|
simp2d |
|- ( ph -> K e. ( II Cn J ) ) |
| 13 |
|
phtpc01 |
|- ( F ( ~=ph ` J ) H -> ( ( F ` 0 ) = ( H ` 0 ) /\ ( F ` 1 ) = ( H ` 1 ) ) ) |
| 14 |
2 13
|
syl |
|- ( ph -> ( ( F ` 0 ) = ( H ` 0 ) /\ ( F ` 1 ) = ( H ` 1 ) ) ) |
| 15 |
14
|
simprd |
|- ( ph -> ( F ` 1 ) = ( H ` 1 ) ) |
| 16 |
|
phtpc01 |
|- ( G ( ~=ph ` J ) K -> ( ( G ` 0 ) = ( K ` 0 ) /\ ( G ` 1 ) = ( K ` 1 ) ) ) |
| 17 |
3 16
|
syl |
|- ( ph -> ( ( G ` 0 ) = ( K ` 0 ) /\ ( G ` 1 ) = ( K ` 1 ) ) ) |
| 18 |
17
|
simpld |
|- ( ph -> ( G ` 0 ) = ( K ` 0 ) ) |
| 19 |
1 15 18
|
3eqtr3d |
|- ( ph -> ( H ` 1 ) = ( K ` 0 ) ) |
| 20 |
11 12 19
|
pcocn |
|- ( ph -> ( H ( *p ` J ) K ) e. ( II Cn J ) ) |
| 21 |
5
|
simp3d |
|- ( ph -> ( F ( PHtpy ` J ) H ) =/= (/) ) |
| 22 |
|
n0 |
|- ( ( F ( PHtpy ` J ) H ) =/= (/) <-> E. m m e. ( F ( PHtpy ` J ) H ) ) |
| 23 |
21 22
|
sylib |
|- ( ph -> E. m m e. ( F ( PHtpy ` J ) H ) ) |
| 24 |
8
|
simp3d |
|- ( ph -> ( G ( PHtpy ` J ) K ) =/= (/) ) |
| 25 |
|
n0 |
|- ( ( G ( PHtpy ` J ) K ) =/= (/) <-> E. n n e. ( G ( PHtpy ` J ) K ) ) |
| 26 |
24 25
|
sylib |
|- ( ph -> E. n n e. ( G ( PHtpy ` J ) K ) ) |
| 27 |
|
exdistrv |
|- ( E. m E. n ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) <-> ( E. m m e. ( F ( PHtpy ` J ) H ) /\ E. n n e. ( G ( PHtpy ` J ) K ) ) ) |
| 28 |
23 26 27
|
sylanbrc |
|- ( ph -> E. m E. n ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) |
| 29 |
1
|
adantr |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> ( F ` 1 ) = ( G ` 0 ) ) |
| 30 |
2
|
adantr |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> F ( ~=ph ` J ) H ) |
| 31 |
3
|
adantr |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> G ( ~=ph ` J ) K ) |
| 32 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( ( 2 x. x ) m y ) , ( ( ( 2 x. x ) - 1 ) n y ) ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( ( 2 x. x ) m y ) , ( ( ( 2 x. x ) - 1 ) n y ) ) ) |
| 33 |
|
simprl |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> m e. ( F ( PHtpy ` J ) H ) ) |
| 34 |
|
simprr |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> n e. ( G ( PHtpy ` J ) K ) ) |
| 35 |
29 30 31 32 33 34
|
pcohtpylem |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( ( 2 x. x ) m y ) , ( ( ( 2 x. x ) - 1 ) n y ) ) ) e. ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) ) |
| 36 |
35
|
ne0d |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) =/= (/) ) |
| 37 |
36
|
ex |
|- ( ph -> ( ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) -> ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) =/= (/) ) ) |
| 38 |
37
|
exlimdvv |
|- ( ph -> ( E. m E. n ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) -> ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) =/= (/) ) ) |
| 39 |
28 38
|
mpd |
|- ( ph -> ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) =/= (/) ) |
| 40 |
|
isphtpc |
|- ( ( F ( *p ` J ) G ) ( ~=ph ` J ) ( H ( *p ` J ) K ) <-> ( ( F ( *p ` J ) G ) e. ( II Cn J ) /\ ( H ( *p ` J ) K ) e. ( II Cn J ) /\ ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) =/= (/) ) ) |
| 41 |
10 20 39 40
|
syl3anbrc |
|- ( ph -> ( F ( *p ` J ) G ) ( ~=ph ` J ) ( H ( *p ` J ) K ) ) |