Step |
Hyp |
Ref |
Expression |
1 |
|
pcohtpy.4 |
|- ( ph -> ( F ` 1 ) = ( G ` 0 ) ) |
2 |
|
pcohtpy.5 |
|- ( ph -> F ( ~=ph ` J ) H ) |
3 |
|
pcohtpy.6 |
|- ( ph -> G ( ~=ph ` J ) K ) |
4 |
|
isphtpc |
|- ( F ( ~=ph ` J ) H <-> ( F e. ( II Cn J ) /\ H e. ( II Cn J ) /\ ( F ( PHtpy ` J ) H ) =/= (/) ) ) |
5 |
2 4
|
sylib |
|- ( ph -> ( F e. ( II Cn J ) /\ H e. ( II Cn J ) /\ ( F ( PHtpy ` J ) H ) =/= (/) ) ) |
6 |
5
|
simp1d |
|- ( ph -> F e. ( II Cn J ) ) |
7 |
|
isphtpc |
|- ( G ( ~=ph ` J ) K <-> ( G e. ( II Cn J ) /\ K e. ( II Cn J ) /\ ( G ( PHtpy ` J ) K ) =/= (/) ) ) |
8 |
3 7
|
sylib |
|- ( ph -> ( G e. ( II Cn J ) /\ K e. ( II Cn J ) /\ ( G ( PHtpy ` J ) K ) =/= (/) ) ) |
9 |
8
|
simp1d |
|- ( ph -> G e. ( II Cn J ) ) |
10 |
6 9 1
|
pcocn |
|- ( ph -> ( F ( *p ` J ) G ) e. ( II Cn J ) ) |
11 |
5
|
simp2d |
|- ( ph -> H e. ( II Cn J ) ) |
12 |
8
|
simp2d |
|- ( ph -> K e. ( II Cn J ) ) |
13 |
|
phtpc01 |
|- ( F ( ~=ph ` J ) H -> ( ( F ` 0 ) = ( H ` 0 ) /\ ( F ` 1 ) = ( H ` 1 ) ) ) |
14 |
2 13
|
syl |
|- ( ph -> ( ( F ` 0 ) = ( H ` 0 ) /\ ( F ` 1 ) = ( H ` 1 ) ) ) |
15 |
14
|
simprd |
|- ( ph -> ( F ` 1 ) = ( H ` 1 ) ) |
16 |
|
phtpc01 |
|- ( G ( ~=ph ` J ) K -> ( ( G ` 0 ) = ( K ` 0 ) /\ ( G ` 1 ) = ( K ` 1 ) ) ) |
17 |
3 16
|
syl |
|- ( ph -> ( ( G ` 0 ) = ( K ` 0 ) /\ ( G ` 1 ) = ( K ` 1 ) ) ) |
18 |
17
|
simpld |
|- ( ph -> ( G ` 0 ) = ( K ` 0 ) ) |
19 |
1 15 18
|
3eqtr3d |
|- ( ph -> ( H ` 1 ) = ( K ` 0 ) ) |
20 |
11 12 19
|
pcocn |
|- ( ph -> ( H ( *p ` J ) K ) e. ( II Cn J ) ) |
21 |
5
|
simp3d |
|- ( ph -> ( F ( PHtpy ` J ) H ) =/= (/) ) |
22 |
|
n0 |
|- ( ( F ( PHtpy ` J ) H ) =/= (/) <-> E. m m e. ( F ( PHtpy ` J ) H ) ) |
23 |
21 22
|
sylib |
|- ( ph -> E. m m e. ( F ( PHtpy ` J ) H ) ) |
24 |
8
|
simp3d |
|- ( ph -> ( G ( PHtpy ` J ) K ) =/= (/) ) |
25 |
|
n0 |
|- ( ( G ( PHtpy ` J ) K ) =/= (/) <-> E. n n e. ( G ( PHtpy ` J ) K ) ) |
26 |
24 25
|
sylib |
|- ( ph -> E. n n e. ( G ( PHtpy ` J ) K ) ) |
27 |
|
exdistrv |
|- ( E. m E. n ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) <-> ( E. m m e. ( F ( PHtpy ` J ) H ) /\ E. n n e. ( G ( PHtpy ` J ) K ) ) ) |
28 |
23 26 27
|
sylanbrc |
|- ( ph -> E. m E. n ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) |
29 |
1
|
adantr |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> ( F ` 1 ) = ( G ` 0 ) ) |
30 |
2
|
adantr |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> F ( ~=ph ` J ) H ) |
31 |
3
|
adantr |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> G ( ~=ph ` J ) K ) |
32 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( ( 2 x. x ) m y ) , ( ( ( 2 x. x ) - 1 ) n y ) ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( ( 2 x. x ) m y ) , ( ( ( 2 x. x ) - 1 ) n y ) ) ) |
33 |
|
simprl |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> m e. ( F ( PHtpy ` J ) H ) ) |
34 |
|
simprr |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> n e. ( G ( PHtpy ` J ) K ) ) |
35 |
29 30 31 32 33 34
|
pcohtpylem |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( ( 2 x. x ) m y ) , ( ( ( 2 x. x ) - 1 ) n y ) ) ) e. ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) ) |
36 |
35
|
ne0d |
|- ( ( ph /\ ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) ) -> ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) =/= (/) ) |
37 |
36
|
ex |
|- ( ph -> ( ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) -> ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) =/= (/) ) ) |
38 |
37
|
exlimdvv |
|- ( ph -> ( E. m E. n ( m e. ( F ( PHtpy ` J ) H ) /\ n e. ( G ( PHtpy ` J ) K ) ) -> ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) =/= (/) ) ) |
39 |
28 38
|
mpd |
|- ( ph -> ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) =/= (/) ) |
40 |
|
isphtpc |
|- ( ( F ( *p ` J ) G ) ( ~=ph ` J ) ( H ( *p ` J ) K ) <-> ( ( F ( *p ` J ) G ) e. ( II Cn J ) /\ ( H ( *p ` J ) K ) e. ( II Cn J ) /\ ( ( F ( *p ` J ) G ) ( PHtpy ` J ) ( H ( *p ` J ) K ) ) =/= (/) ) ) |
41 |
10 20 39 40
|
syl3anbrc |
|- ( ph -> ( F ( *p ` J ) G ) ( ~=ph ` J ) ( H ( *p ` J ) K ) ) |