| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcoval.2 |
|- ( ph -> F e. ( II Cn J ) ) |
| 2 |
|
pcoval.3 |
|- ( ph -> G e. ( II Cn J ) ) |
| 3 |
|
pcoval2.4 |
|- ( ph -> ( F ` 1 ) = ( G ` 0 ) ) |
| 4 |
1 2
|
pcoval |
|- ( ph -> ( F ( *p ` J ) G ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
| 5 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 6 |
5
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 7 |
6
|
cnmptid |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> x ) e. ( II Cn II ) ) |
| 8 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 9 |
8
|
a1i |
|- ( ph -> 0 e. ( 0 [,] 1 ) ) |
| 10 |
6 6 9
|
cnmptc |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> 0 ) e. ( II Cn II ) ) |
| 11 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 12 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) |
| 13 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) = ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) |
| 14 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
| 15 |
|
0re |
|- 0 e. RR |
| 16 |
15
|
a1i |
|- ( ph -> 0 e. RR ) |
| 17 |
|
1re |
|- 1 e. RR |
| 18 |
17
|
a1i |
|- ( ph -> 1 e. RR ) |
| 19 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 20 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
| 21 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 22 |
19 17 21
|
ltleii |
|- ( 1 / 2 ) <_ 1 |
| 23 |
|
elicc01 |
|- ( ( 1 / 2 ) e. ( 0 [,] 1 ) <-> ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) <_ 1 ) ) |
| 24 |
19 20 22 23
|
mpbir3an |
|- ( 1 / 2 ) e. ( 0 [,] 1 ) |
| 25 |
24
|
a1i |
|- ( ph -> ( 1 / 2 ) e. ( 0 [,] 1 ) ) |
| 26 |
3
|
adantr |
|- ( ( ph /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( F ` 1 ) = ( G ` 0 ) ) |
| 27 |
|
simprl |
|- ( ( ph /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> y = ( 1 / 2 ) ) |
| 28 |
27
|
oveq2d |
|- ( ( ph /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( 2 x. y ) = ( 2 x. ( 1 / 2 ) ) ) |
| 29 |
|
2cn |
|- 2 e. CC |
| 30 |
|
2ne0 |
|- 2 =/= 0 |
| 31 |
29 30
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
| 32 |
28 31
|
eqtrdi |
|- ( ( ph /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( 2 x. y ) = 1 ) |
| 33 |
32
|
fveq2d |
|- ( ( ph /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( F ` ( 2 x. y ) ) = ( F ` 1 ) ) |
| 34 |
32
|
oveq1d |
|- ( ( ph /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( ( 2 x. y ) - 1 ) = ( 1 - 1 ) ) |
| 35 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 36 |
34 35
|
eqtrdi |
|- ( ( ph /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( ( 2 x. y ) - 1 ) = 0 ) |
| 37 |
36
|
fveq2d |
|- ( ( ph /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( G ` ( ( 2 x. y ) - 1 ) ) = ( G ` 0 ) ) |
| 38 |
26 33 37
|
3eqtr4d |
|- ( ( ph /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( F ` ( 2 x. y ) ) = ( G ` ( ( 2 x. y ) - 1 ) ) ) |
| 39 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 40 |
|
iccssre |
|- ( ( 0 e. RR /\ ( 1 / 2 ) e. RR ) -> ( 0 [,] ( 1 / 2 ) ) C_ RR ) |
| 41 |
15 19 40
|
mp2an |
|- ( 0 [,] ( 1 / 2 ) ) C_ RR |
| 42 |
|
resttopon |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ ( 0 [,] ( 1 / 2 ) ) C_ RR ) -> ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) e. ( TopOn ` ( 0 [,] ( 1 / 2 ) ) ) ) |
| 43 |
39 41 42
|
mp2an |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) e. ( TopOn ` ( 0 [,] ( 1 / 2 ) ) ) |
| 44 |
43
|
a1i |
|- ( ph -> ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) e. ( TopOn ` ( 0 [,] ( 1 / 2 ) ) ) ) |
| 45 |
44 6
|
cnmpt1st |
|- ( ph -> ( y e. ( 0 [,] ( 1 / 2 ) ) , z e. ( 0 [,] 1 ) |-> y ) e. ( ( ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) tX II ) Cn ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) ) ) |
| 46 |
12
|
iihalf1cn |
|- ( x e. ( 0 [,] ( 1 / 2 ) ) |-> ( 2 x. x ) ) e. ( ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) |
| 47 |
46
|
a1i |
|- ( ph -> ( x e. ( 0 [,] ( 1 / 2 ) ) |-> ( 2 x. x ) ) e. ( ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) ) |
| 48 |
|
oveq2 |
|- ( x = y -> ( 2 x. x ) = ( 2 x. y ) ) |
| 49 |
44 6 45 44 47 48
|
cnmpt21 |
|- ( ph -> ( y e. ( 0 [,] ( 1 / 2 ) ) , z e. ( 0 [,] 1 ) |-> ( 2 x. y ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) tX II ) Cn II ) ) |
| 50 |
44 6 49 1
|
cnmpt21f |
|- ( ph -> ( y e. ( 0 [,] ( 1 / 2 ) ) , z e. ( 0 [,] 1 ) |-> ( F ` ( 2 x. y ) ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) tX II ) Cn J ) ) |
| 51 |
|
iccssre |
|- ( ( ( 1 / 2 ) e. RR /\ 1 e. RR ) -> ( ( 1 / 2 ) [,] 1 ) C_ RR ) |
| 52 |
19 17 51
|
mp2an |
|- ( ( 1 / 2 ) [,] 1 ) C_ RR |
| 53 |
|
resttopon |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ ( ( 1 / 2 ) [,] 1 ) C_ RR ) -> ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) e. ( TopOn ` ( ( 1 / 2 ) [,] 1 ) ) ) |
| 54 |
39 52 53
|
mp2an |
|- ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) e. ( TopOn ` ( ( 1 / 2 ) [,] 1 ) ) |
| 55 |
54
|
a1i |
|- ( ph -> ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) e. ( TopOn ` ( ( 1 / 2 ) [,] 1 ) ) ) |
| 56 |
55 6
|
cnmpt1st |
|- ( ph -> ( y e. ( ( 1 / 2 ) [,] 1 ) , z e. ( 0 [,] 1 ) |-> y ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) tX II ) Cn ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 57 |
13
|
iihalf2cn |
|- ( x e. ( ( 1 / 2 ) [,] 1 ) |-> ( ( 2 x. x ) - 1 ) ) e. ( ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) |
| 58 |
57
|
a1i |
|- ( ph -> ( x e. ( ( 1 / 2 ) [,] 1 ) |-> ( ( 2 x. x ) - 1 ) ) e. ( ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) ) |
| 59 |
48
|
oveq1d |
|- ( x = y -> ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) |
| 60 |
55 6 56 55 58 59
|
cnmpt21 |
|- ( ph -> ( y e. ( ( 1 / 2 ) [,] 1 ) , z e. ( 0 [,] 1 ) |-> ( ( 2 x. y ) - 1 ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) tX II ) Cn II ) ) |
| 61 |
55 6 60 2
|
cnmpt21f |
|- ( ph -> ( y e. ( ( 1 / 2 ) [,] 1 ) , z e. ( 0 [,] 1 ) |-> ( G ` ( ( 2 x. y ) - 1 ) ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) tX II ) Cn J ) ) |
| 62 |
11 12 13 14 16 18 25 6 38 50 61
|
cnmpopc |
|- ( ph -> ( y e. ( 0 [,] 1 ) , z e. ( 0 [,] 1 ) |-> if ( y <_ ( 1 / 2 ) , ( F ` ( 2 x. y ) ) , ( G ` ( ( 2 x. y ) - 1 ) ) ) ) e. ( ( II tX II ) Cn J ) ) |
| 63 |
|
breq1 |
|- ( y = x -> ( y <_ ( 1 / 2 ) <-> x <_ ( 1 / 2 ) ) ) |
| 64 |
|
oveq2 |
|- ( y = x -> ( 2 x. y ) = ( 2 x. x ) ) |
| 65 |
64
|
fveq2d |
|- ( y = x -> ( F ` ( 2 x. y ) ) = ( F ` ( 2 x. x ) ) ) |
| 66 |
64
|
oveq1d |
|- ( y = x -> ( ( 2 x. y ) - 1 ) = ( ( 2 x. x ) - 1 ) ) |
| 67 |
66
|
fveq2d |
|- ( y = x -> ( G ` ( ( 2 x. y ) - 1 ) ) = ( G ` ( ( 2 x. x ) - 1 ) ) ) |
| 68 |
63 65 67
|
ifbieq12d |
|- ( y = x -> if ( y <_ ( 1 / 2 ) , ( F ` ( 2 x. y ) ) , ( G ` ( ( 2 x. y ) - 1 ) ) ) = if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) |
| 69 |
68
|
adantr |
|- ( ( y = x /\ z = 0 ) -> if ( y <_ ( 1 / 2 ) , ( F ` ( 2 x. y ) ) , ( G ` ( ( 2 x. y ) - 1 ) ) ) = if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) |
| 70 |
6 7 10 6 6 62 69
|
cnmpt12 |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) e. ( II Cn J ) ) |
| 71 |
4 70
|
eqeltrd |
|- ( ph -> ( F ( *p ` J ) G ) e. ( II Cn J ) ) |