Step |
Hyp |
Ref |
Expression |
1 |
|
pcoval.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
pcoval.3 |
|- ( ph -> G e. ( II Cn J ) ) |
3 |
|
fveq1 |
|- ( f = F -> ( f ` ( 2 x. x ) ) = ( F ` ( 2 x. x ) ) ) |
4 |
3
|
adantr |
|- ( ( f = F /\ g = G ) -> ( f ` ( 2 x. x ) ) = ( F ` ( 2 x. x ) ) ) |
5 |
|
fveq1 |
|- ( g = G -> ( g ` ( ( 2 x. x ) - 1 ) ) = ( G ` ( ( 2 x. x ) - 1 ) ) ) |
6 |
5
|
adantl |
|- ( ( f = F /\ g = G ) -> ( g ` ( ( 2 x. x ) - 1 ) ) = ( G ` ( ( 2 x. x ) - 1 ) ) ) |
7 |
4 6
|
ifeq12d |
|- ( ( f = F /\ g = G ) -> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) = if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) |
8 |
7
|
mpteq2dv |
|- ( ( f = F /\ g = G ) -> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
9 |
|
pcofval |
|- ( *p ` J ) = ( f e. ( II Cn J ) , g e. ( II Cn J ) |-> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( f ` ( 2 x. x ) ) , ( g ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
10 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
11 |
10
|
mptex |
|- ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) e. _V |
12 |
8 9 11
|
ovmpoa |
|- ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) ) -> ( F ( *p ` J ) G ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
13 |
1 2 12
|
syl2anc |
|- ( ph -> ( F ( *p ` J ) G ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) ) |