Metamath Proof Explorer


Theorem pcocn

Description: The concatenation of two paths is a path. (Contributed by Jeff Madsen, 19-Jun-2010) (Proof shortened by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses pcoval.2 φ F II Cn J
pcoval.3 φ G II Cn J
pcoval2.4 φ F 1 = G 0
Assertion pcocn φ F * 𝑝 J G II Cn J

Proof

Step Hyp Ref Expression
1 pcoval.2 φ F II Cn J
2 pcoval.3 φ G II Cn J
3 pcoval2.4 φ F 1 = G 0
4 1 2 pcoval φ F * 𝑝 J G = x 0 1 if x 1 2 F 2 x G 2 x 1
5 iitopon II TopOn 0 1
6 5 a1i φ II TopOn 0 1
7 6 cnmptid φ x 0 1 x II Cn II
8 0elunit 0 0 1
9 8 a1i φ 0 0 1
10 6 6 9 cnmptc φ x 0 1 0 II Cn II
11 eqid topGen ran . = topGen ran .
12 eqid topGen ran . 𝑡 0 1 2 = topGen ran . 𝑡 0 1 2
13 eqid topGen ran . 𝑡 1 2 1 = topGen ran . 𝑡 1 2 1
14 dfii2 II = topGen ran . 𝑡 0 1
15 0re 0
16 15 a1i φ 0
17 1re 1
18 17 a1i φ 1
19 halfre 1 2
20 halfge0 0 1 2
21 halflt1 1 2 < 1
22 19 17 21 ltleii 1 2 1
23 elicc01 1 2 0 1 1 2 0 1 2 1 2 1
24 19 20 22 23 mpbir3an 1 2 0 1
25 24 a1i φ 1 2 0 1
26 3 adantr φ y = 1 2 z 0 1 F 1 = G 0
27 simprl φ y = 1 2 z 0 1 y = 1 2
28 27 oveq2d φ y = 1 2 z 0 1 2 y = 2 1 2
29 2cn 2
30 2ne0 2 0
31 29 30 recidi 2 1 2 = 1
32 28 31 eqtrdi φ y = 1 2 z 0 1 2 y = 1
33 32 fveq2d φ y = 1 2 z 0 1 F 2 y = F 1
34 32 oveq1d φ y = 1 2 z 0 1 2 y 1 = 1 1
35 1m1e0 1 1 = 0
36 34 35 eqtrdi φ y = 1 2 z 0 1 2 y 1 = 0
37 36 fveq2d φ y = 1 2 z 0 1 G 2 y 1 = G 0
38 26 33 37 3eqtr4d φ y = 1 2 z 0 1 F 2 y = G 2 y 1
39 retopon topGen ran . TopOn
40 iccssre 0 1 2 0 1 2
41 15 19 40 mp2an 0 1 2
42 resttopon topGen ran . TopOn 0 1 2 topGen ran . 𝑡 0 1 2 TopOn 0 1 2
43 39 41 42 mp2an topGen ran . 𝑡 0 1 2 TopOn 0 1 2
44 43 a1i φ topGen ran . 𝑡 0 1 2 TopOn 0 1 2
45 44 6 cnmpt1st φ y 0 1 2 , z 0 1 y topGen ran . 𝑡 0 1 2 × t II Cn topGen ran . 𝑡 0 1 2
46 12 iihalf1cn x 0 1 2 2 x topGen ran . 𝑡 0 1 2 Cn II
47 46 a1i φ x 0 1 2 2 x topGen ran . 𝑡 0 1 2 Cn II
48 oveq2 x = y 2 x = 2 y
49 44 6 45 44 47 48 cnmpt21 φ y 0 1 2 , z 0 1 2 y topGen ran . 𝑡 0 1 2 × t II Cn II
50 44 6 49 1 cnmpt21f φ y 0 1 2 , z 0 1 F 2 y topGen ran . 𝑡 0 1 2 × t II Cn J
51 iccssre 1 2 1 1 2 1
52 19 17 51 mp2an 1 2 1
53 resttopon topGen ran . TopOn 1 2 1 topGen ran . 𝑡 1 2 1 TopOn 1 2 1
54 39 52 53 mp2an topGen ran . 𝑡 1 2 1 TopOn 1 2 1
55 54 a1i φ topGen ran . 𝑡 1 2 1 TopOn 1 2 1
56 55 6 cnmpt1st φ y 1 2 1 , z 0 1 y topGen ran . 𝑡 1 2 1 × t II Cn topGen ran . 𝑡 1 2 1
57 13 iihalf2cn x 1 2 1 2 x 1 topGen ran . 𝑡 1 2 1 Cn II
58 57 a1i φ x 1 2 1 2 x 1 topGen ran . 𝑡 1 2 1 Cn II
59 48 oveq1d x = y 2 x 1 = 2 y 1
60 55 6 56 55 58 59 cnmpt21 φ y 1 2 1 , z 0 1 2 y 1 topGen ran . 𝑡 1 2 1 × t II Cn II
61 55 6 60 2 cnmpt21f φ y 1 2 1 , z 0 1 G 2 y 1 topGen ran . 𝑡 1 2 1 × t II Cn J
62 11 12 13 14 16 18 25 6 38 50 61 cnmpopc φ y 0 1 , z 0 1 if y 1 2 F 2 y G 2 y 1 II × t II Cn J
63 breq1 y = x y 1 2 x 1 2
64 oveq2 y = x 2 y = 2 x
65 64 fveq2d y = x F 2 y = F 2 x
66 64 oveq1d y = x 2 y 1 = 2 x 1
67 66 fveq2d y = x G 2 y 1 = G 2 x 1
68 63 65 67 ifbieq12d y = x if y 1 2 F 2 y G 2 y 1 = if x 1 2 F 2 x G 2 x 1
69 68 adantr y = x z = 0 if y 1 2 F 2 y G 2 y 1 = if x 1 2 F 2 x G 2 x 1
70 6 7 10 6 6 62 69 cnmpt12 φ x 0 1 if x 1 2 F 2 x G 2 x 1 II Cn J
71 4 70 eqeltrd φ F * 𝑝 J G II Cn J