Metamath Proof Explorer


Theorem pcoptcl

Description: A constant function is a path from Y to itself. (Contributed by Mario Carneiro, 12-Feb-2015) (Revised by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis pcopt.1
|- P = ( ( 0 [,] 1 ) X. { Y } )
Assertion pcoptcl
|- ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( P e. ( II Cn J ) /\ ( P ` 0 ) = Y /\ ( P ` 1 ) = Y ) )

Proof

Step Hyp Ref Expression
1 pcopt.1
 |-  P = ( ( 0 [,] 1 ) X. { Y } )
2 iitopon
 |-  II e. ( TopOn ` ( 0 [,] 1 ) )
3 cnconst2
 |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ J e. ( TopOn ` X ) /\ Y e. X ) -> ( ( 0 [,] 1 ) X. { Y } ) e. ( II Cn J ) )
4 2 3 mp3an1
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( ( 0 [,] 1 ) X. { Y } ) e. ( II Cn J ) )
5 1 4 eqeltrid
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> P e. ( II Cn J ) )
6 1 fveq1i
 |-  ( P ` 0 ) = ( ( ( 0 [,] 1 ) X. { Y } ) ` 0 )
7 simpr
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> Y e. X )
8 0elunit
 |-  0 e. ( 0 [,] 1 )
9 fvconst2g
 |-  ( ( Y e. X /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { Y } ) ` 0 ) = Y )
10 7 8 9 sylancl
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( ( ( 0 [,] 1 ) X. { Y } ) ` 0 ) = Y )
11 6 10 eqtrid
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( P ` 0 ) = Y )
12 1 fveq1i
 |-  ( P ` 1 ) = ( ( ( 0 [,] 1 ) X. { Y } ) ` 1 )
13 1elunit
 |-  1 e. ( 0 [,] 1 )
14 fvconst2g
 |-  ( ( Y e. X /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { Y } ) ` 1 ) = Y )
15 7 13 14 sylancl
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( ( ( 0 [,] 1 ) X. { Y } ) ` 1 ) = Y )
16 12 15 eqtrid
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( P ` 1 ) = Y )
17 5 11 16 3jca
 |-  ( ( J e. ( TopOn ` X ) /\ Y e. X ) -> ( P e. ( II Cn J ) /\ ( P ` 0 ) = Y /\ ( P ` 1 ) = Y ) )