Step |
Hyp |
Ref |
Expression |
1 |
|
pcopt.1 |
⊢ 𝑃 = ( ( 0 [,] 1 ) × { 𝑌 } ) |
2 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
3 |
|
cnconst2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → ( ( 0 [,] 1 ) × { 𝑌 } ) ∈ ( II Cn 𝐽 ) ) |
4 |
2 3
|
mp3an1 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → ( ( 0 [,] 1 ) × { 𝑌 } ) ∈ ( II Cn 𝐽 ) ) |
5 |
1 4
|
eqeltrid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → 𝑃 ∈ ( II Cn 𝐽 ) ) |
6 |
1
|
fveq1i |
⊢ ( 𝑃 ‘ 0 ) = ( ( ( 0 [,] 1 ) × { 𝑌 } ) ‘ 0 ) |
7 |
|
simpr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → 𝑌 ∈ 𝑋 ) |
8 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
9 |
|
fvconst2g |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { 𝑌 } ) ‘ 0 ) = 𝑌 ) |
10 |
7 8 9
|
sylancl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → ( ( ( 0 [,] 1 ) × { 𝑌 } ) ‘ 0 ) = 𝑌 ) |
11 |
6 10
|
eqtrid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → ( 𝑃 ‘ 0 ) = 𝑌 ) |
12 |
1
|
fveq1i |
⊢ ( 𝑃 ‘ 1 ) = ( ( ( 0 [,] 1 ) × { 𝑌 } ) ‘ 1 ) |
13 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
14 |
|
fvconst2g |
⊢ ( ( 𝑌 ∈ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { 𝑌 } ) ‘ 1 ) = 𝑌 ) |
15 |
7 13 14
|
sylancl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → ( ( ( 0 [,] 1 ) × { 𝑌 } ) ‘ 1 ) = 𝑌 ) |
16 |
12 15
|
eqtrid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → ( 𝑃 ‘ 1 ) = 𝑌 ) |
17 |
5 11 16
|
3jca |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → ( 𝑃 ∈ ( II Cn 𝐽 ) ∧ ( 𝑃 ‘ 0 ) = 𝑌 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) ) |