Step |
Hyp |
Ref |
Expression |
1 |
|
pcopt.1 |
⊢ 𝑃 = ( ( 0 [,] 1 ) × { 𝑌 } ) |
2 |
1
|
fveq1i |
⊢ ( 𝑃 ‘ ( 2 · 𝑥 ) ) = ( ( ( 0 [,] 1 ) × { 𝑌 } ) ‘ ( 2 · 𝑥 ) ) |
3 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝐹 ‘ 0 ) = 𝑌 ) |
4 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
5 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
6 |
4 5
|
cnf |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
8 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
9 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) ∈ ∪ 𝐽 ) |
10 |
7 8 9
|
sylancl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝐹 ‘ 0 ) ∈ ∪ 𝐽 ) |
11 |
3 10
|
eqeltrrd |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → 𝑌 ∈ ∪ 𝐽 ) |
12 |
|
elii1 |
⊢ ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 ≤ ( 1 / 2 ) ) ) |
13 |
|
iihalf1 |
⊢ ( 𝑥 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 2 · 𝑥 ) ∈ ( 0 [,] 1 ) ) |
14 |
12 13
|
sylbir |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 ≤ ( 1 / 2 ) ) → ( 2 · 𝑥 ) ∈ ( 0 [,] 1 ) ) |
15 |
|
fvconst2g |
⊢ ( ( 𝑌 ∈ ∪ 𝐽 ∧ ( 2 · 𝑥 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { 𝑌 } ) ‘ ( 2 · 𝑥 ) ) = 𝑌 ) |
16 |
11 14 15
|
syl2an |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 ≤ ( 1 / 2 ) ) ) → ( ( ( 0 [,] 1 ) × { 𝑌 } ) ‘ ( 2 · 𝑥 ) ) = 𝑌 ) |
17 |
2 16
|
eqtrid |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 ≤ ( 1 / 2 ) ) ) → ( 𝑃 ‘ ( 2 · 𝑥 ) ) = 𝑌 ) |
18 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 ≤ ( 1 / 2 ) ) ) → ( 𝐹 ‘ 0 ) = 𝑌 ) |
19 |
17 18
|
eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 ≤ ( 1 / 2 ) ) ) → ( 𝑃 ‘ ( 2 · 𝑥 ) ) = ( 𝐹 ‘ 0 ) ) |
20 |
19
|
ifeq1d |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑥 ≤ ( 1 / 2 ) ) ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝑃 ‘ ( 2 · 𝑥 ) ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
21 |
20
|
expr |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 𝑥 ≤ ( 1 / 2 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝑃 ‘ ( 2 · 𝑥 ) ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) |
22 |
|
iffalse |
⊢ ( ¬ 𝑥 ≤ ( 1 / 2 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝑃 ‘ ( 2 · 𝑥 ) ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) = ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) |
23 |
|
iffalse |
⊢ ( ¬ 𝑥 ≤ ( 1 / 2 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) = ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) |
24 |
22 23
|
eqtr4d |
⊢ ( ¬ 𝑥 ≤ ( 1 / 2 ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝑃 ‘ ( 2 · 𝑥 ) ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
25 |
21 24
|
pm2.61d1 |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝑃 ‘ ( 2 · 𝑥 ) ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
26 |
25
|
mpteq2dva |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝑃 ‘ ( 2 · 𝑥 ) ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) |
27 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐽 ∈ Top ) |
28 |
27
|
adantr |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → 𝐽 ∈ Top ) |
29 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
30 |
28 29
|
sylib |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
31 |
1
|
pcoptcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝑌 ∈ ∪ 𝐽 ) → ( 𝑃 ∈ ( II Cn 𝐽 ) ∧ ( 𝑃 ‘ 0 ) = 𝑌 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) ) |
32 |
30 11 31
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑃 ∈ ( II Cn 𝐽 ) ∧ ( 𝑃 ‘ 0 ) = 𝑌 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) ) |
33 |
32
|
simp1d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → 𝑃 ∈ ( II Cn 𝐽 ) ) |
34 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
35 |
33 34
|
pcoval |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑃 ( *𝑝 ‘ 𝐽 ) 𝐹 ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝑃 ‘ ( 2 · 𝑥 ) ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) |
36 |
|
iffalse |
⊢ ( ¬ 𝑥 ≤ ( 1 / 2 ) → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) = ( ( 2 · 𝑥 ) − 1 ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 ≤ ( 1 / 2 ) ) → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) = ( ( 2 · 𝑥 ) − 1 ) ) |
38 |
|
elii2 |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 ≤ ( 1 / 2 ) ) → 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ) |
39 |
|
iihalf2 |
⊢ ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) → ( ( 2 · 𝑥 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
40 |
38 39
|
syl |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑥 ) − 1 ) ∈ ( 0 [,] 1 ) ) |
41 |
37 40
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑥 ≤ ( 1 / 2 ) ) → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 0 [,] 1 ) ) |
42 |
41
|
ex |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → ( ¬ 𝑥 ≤ ( 1 / 2 ) → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 0 [,] 1 ) ) ) |
43 |
|
iftrue |
⊢ ( 𝑥 ≤ ( 1 / 2 ) → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) = 0 ) |
44 |
43 8
|
eqeltrdi |
⊢ ( 𝑥 ≤ ( 1 / 2 ) → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 0 [,] 1 ) ) |
45 |
42 44
|
pm2.61d2 |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 0 [,] 1 ) ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( 0 [,] 1 ) ) |
47 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) |
48 |
47
|
a1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
49 |
7
|
feqmptd |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → 𝐹 = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
50 |
|
fveq2 |
⊢ ( 𝑦 = if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
51 |
|
fvif |
⊢ ( 𝐹 ‘ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) |
52 |
50 51
|
eqtrdi |
⊢ ( 𝑦 = if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) → ( 𝐹 ‘ 𝑦 ) = if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) |
53 |
46 48 49 52
|
fmptco |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝐹 ∘ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( 𝐹 ‘ 0 ) , ( 𝐹 ‘ ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) |
54 |
26 35 53
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑃 ( *𝑝 ‘ 𝐽 ) 𝐹 ) = ( 𝐹 ∘ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) ) ) |
55 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
56 |
55
|
a1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
57 |
56
|
cnmptid |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( II Cn II ) ) |
58 |
8
|
a1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → 0 ∈ ( 0 [,] 1 ) ) |
59 |
56 56 58
|
cnmptc |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 0 ) ∈ ( II Cn II ) ) |
60 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
61 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) |
62 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) |
63 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
64 |
|
0re |
⊢ 0 ∈ ℝ |
65 |
64
|
a1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → 0 ∈ ℝ ) |
66 |
|
1re |
⊢ 1 ∈ ℝ |
67 |
66
|
a1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → 1 ∈ ℝ ) |
68 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
69 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
70 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
71 |
68 66 70
|
ltleii |
⊢ ( 1 / 2 ) ≤ 1 |
72 |
|
elicc01 |
⊢ ( ( 1 / 2 ) ∈ ( 0 [,] 1 ) ↔ ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ∧ ( 1 / 2 ) ≤ 1 ) ) |
73 |
68 69 71 72
|
mpbir3an |
⊢ ( 1 / 2 ) ∈ ( 0 [,] 1 ) |
74 |
73
|
a1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 1 / 2 ) ∈ ( 0 [,] 1 ) ) |
75 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ) → 𝑦 = ( 1 / 2 ) ) |
76 |
75
|
oveq2d |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ) → ( 2 · 𝑦 ) = ( 2 · ( 1 / 2 ) ) ) |
77 |
|
2cn |
⊢ 2 ∈ ℂ |
78 |
|
2ne0 |
⊢ 2 ≠ 0 |
79 |
77 78
|
recidi |
⊢ ( 2 · ( 1 / 2 ) ) = 1 |
80 |
76 79
|
eqtrdi |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ) → ( 2 · 𝑦 ) = 1 ) |
81 |
80
|
oveq1d |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ) → ( ( 2 · 𝑦 ) − 1 ) = ( 1 − 1 ) ) |
82 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
83 |
81 82
|
eqtr2di |
⊢ ( ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ∧ ( 𝑦 = ( 1 / 2 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ) → 0 = ( ( 2 · 𝑦 ) − 1 ) ) |
84 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
85 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ ) |
86 |
64 68 85
|
mp2an |
⊢ ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ |
87 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( 0 [,] ( 1 / 2 ) ) ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) ) |
88 |
84 86 87
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) |
89 |
88
|
a1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ∈ ( TopOn ‘ ( 0 [,] ( 1 / 2 ) ) ) ) |
90 |
89 56 56 58
|
cnmpt2c |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑦 ∈ ( 0 [,] ( 1 / 2 ) ) , 𝑧 ∈ ( 0 [,] 1 ) ↦ 0 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] ( 1 / 2 ) ) ) ×t II ) Cn II ) ) |
91 |
|
iccssre |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) |
92 |
68 66 91
|
mp2an |
⊢ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ |
93 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ ( ( 1 / 2 ) [,] 1 ) ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) ) |
94 |
84 92 93
|
mp2an |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) |
95 |
94
|
a1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ∈ ( TopOn ‘ ( ( 1 / 2 ) [,] 1 ) ) ) |
96 |
95 56
|
cnmpt1st |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑧 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ) ) |
97 |
62
|
iihalf2cn |
⊢ ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) |
98 |
97
|
a1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑥 ∈ ( ( 1 / 2 ) [,] 1 ) ↦ ( ( 2 · 𝑥 ) − 1 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) ) |
99 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) |
100 |
99
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
101 |
95 56 96 95 98 100
|
cnmpt21 |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑦 ∈ ( ( 1 / 2 ) [,] 1 ) , 𝑧 ∈ ( 0 [,] 1 ) ↦ ( ( 2 · 𝑦 ) − 1 ) ) ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t ( ( 1 / 2 ) [,] 1 ) ) ×t II ) Cn II ) ) |
102 |
60 61 62 63 65 67 74 56 83 90 101
|
cnmpopc |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑦 ∈ ( 0 [,] 1 ) , 𝑧 ∈ ( 0 [,] 1 ) ↦ if ( 𝑦 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑦 ) − 1 ) ) ) ∈ ( ( II ×t II ) Cn II ) ) |
103 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≤ ( 1 / 2 ) ↔ 𝑥 ≤ ( 1 / 2 ) ) ) |
104 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 2 · 𝑦 ) = ( 2 · 𝑥 ) ) |
105 |
104
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 2 · 𝑦 ) − 1 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
106 |
103 105
|
ifbieq2d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑦 ) − 1 ) ) = if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) |
107 |
106
|
adantr |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑧 = 0 ) → if ( 𝑦 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑦 ) − 1 ) ) = if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) |
108 |
56 57 59 56 56 102 107
|
cnmpt12 |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) ∈ ( II Cn II ) ) |
109 |
|
id |
⊢ ( 𝑥 = 0 → 𝑥 = 0 ) |
110 |
109 69
|
eqbrtrdi |
⊢ ( 𝑥 = 0 → 𝑥 ≤ ( 1 / 2 ) ) |
111 |
110 43
|
syl |
⊢ ( 𝑥 = 0 → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) = 0 ) |
112 |
|
c0ex |
⊢ 0 ∈ V |
113 |
111 47 112
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) ‘ 0 ) = 0 ) |
114 |
8 113
|
mp1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) ‘ 0 ) = 0 ) |
115 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
116 |
68 66
|
ltnlei |
⊢ ( ( 1 / 2 ) < 1 ↔ ¬ 1 ≤ ( 1 / 2 ) ) |
117 |
70 116
|
mpbi |
⊢ ¬ 1 ≤ ( 1 / 2 ) |
118 |
|
breq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ≤ ( 1 / 2 ) ↔ 1 ≤ ( 1 / 2 ) ) ) |
119 |
117 118
|
mtbiri |
⊢ ( 𝑥 = 1 → ¬ 𝑥 ≤ ( 1 / 2 ) ) |
120 |
119 36
|
syl |
⊢ ( 𝑥 = 1 → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) = ( ( 2 · 𝑥 ) − 1 ) ) |
121 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 2 · 𝑥 ) = ( 2 · 1 ) ) |
122 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
123 |
121 122
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 2 · 𝑥 ) = 2 ) |
124 |
123
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( 2 · 𝑥 ) − 1 ) = ( 2 − 1 ) ) |
125 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
126 |
124 125
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( ( 2 · 𝑥 ) − 1 ) = 1 ) |
127 |
120 126
|
eqtrd |
⊢ ( 𝑥 = 1 → if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) = 1 ) |
128 |
|
1ex |
⊢ 1 ∈ V |
129 |
127 47 128
|
fvmpt |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) ‘ 1 ) = 1 ) |
130 |
115 129
|
mp1i |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) ‘ 1 ) = 1 ) |
131 |
34 108 114 130
|
reparpht |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝐹 ∘ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , 0 , ( ( 2 · 𝑥 ) − 1 ) ) ) ) ( ≃ph ‘ 𝐽 ) 𝐹 ) |
132 |
54 131
|
eqbrtrd |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) → ( 𝑃 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) 𝐹 ) |