Metamath Proof Explorer


Theorem pcopt

Description: Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypothesis pcopt.1 P=01×Y
Assertion pcopt FIICnJF0=YP*𝑝JFphJF

Proof

Step Hyp Ref Expression
1 pcopt.1 P=01×Y
2 1 fveq1i P2x=01×Y2x
3 simpr FIICnJF0=YF0=Y
4 iiuni 01=II
5 eqid J=J
6 4 5 cnf FIICnJF:01J
7 6 adantr FIICnJF0=YF:01J
8 0elunit 001
9 ffvelcdm F:01J001F0J
10 7 8 9 sylancl FIICnJF0=YF0J
11 3 10 eqeltrrd FIICnJF0=YYJ
12 elii1 x012x01x12
13 iihalf1 x0122x01
14 12 13 sylbir x01x122x01
15 fvconst2g YJ2x0101×Y2x=Y
16 11 14 15 syl2an FIICnJF0=Yx01x1201×Y2x=Y
17 2 16 eqtrid FIICnJF0=Yx01x12P2x=Y
18 simplr FIICnJF0=Yx01x12F0=Y
19 17 18 eqtr4d FIICnJF0=Yx01x12P2x=F0
20 19 ifeq1d FIICnJF0=Yx01x12ifx12P2xF2x1=ifx12F0F2x1
21 20 expr FIICnJF0=Yx01x12ifx12P2xF2x1=ifx12F0F2x1
22 iffalse ¬x12ifx12P2xF2x1=F2x1
23 iffalse ¬x12ifx12F0F2x1=F2x1
24 22 23 eqtr4d ¬x12ifx12P2xF2x1=ifx12F0F2x1
25 21 24 pm2.61d1 FIICnJF0=Yx01ifx12P2xF2x1=ifx12F0F2x1
26 25 mpteq2dva FIICnJF0=Yx01ifx12P2xF2x1=x01ifx12F0F2x1
27 cntop2 FIICnJJTop
28 27 adantr FIICnJF0=YJTop
29 toptopon2 JTopJTopOnJ
30 28 29 sylib FIICnJF0=YJTopOnJ
31 1 pcoptcl JTopOnJYJPIICnJP0=YP1=Y
32 30 11 31 syl2anc FIICnJF0=YPIICnJP0=YP1=Y
33 32 simp1d FIICnJF0=YPIICnJ
34 simpl FIICnJF0=YFIICnJ
35 33 34 pcoval FIICnJF0=YP*𝑝JF=x01ifx12P2xF2x1
36 iffalse ¬x12ifx1202x1=2x1
37 36 adantl x01¬x12ifx1202x1=2x1
38 elii2 x01¬x12x121
39 iihalf2 x1212x101
40 38 39 syl x01¬x122x101
41 37 40 eqeltrd x01¬x12ifx1202x101
42 41 ex x01¬x12ifx1202x101
43 iftrue x12ifx1202x1=0
44 43 8 eqeltrdi x12ifx1202x101
45 42 44 pm2.61d2 x01ifx1202x101
46 45 adantl FIICnJF0=Yx01ifx1202x101
47 eqid x01ifx1202x1=x01ifx1202x1
48 47 a1i FIICnJF0=Yx01ifx1202x1=x01ifx1202x1
49 7 feqmptd FIICnJF0=YF=y01Fy
50 fveq2 y=ifx1202x1Fy=Fifx1202x1
51 fvif Fifx1202x1=ifx12F0F2x1
52 50 51 eqtrdi y=ifx1202x1Fy=ifx12F0F2x1
53 46 48 49 52 fmptco FIICnJF0=YFx01ifx1202x1=x01ifx12F0F2x1
54 26 35 53 3eqtr4d FIICnJF0=YP*𝑝JF=Fx01ifx1202x1
55 iitopon IITopOn01
56 55 a1i FIICnJF0=YIITopOn01
57 56 cnmptid FIICnJF0=Yx01xIICnII
58 8 a1i FIICnJF0=Y001
59 56 56 58 cnmptc FIICnJF0=Yx010IICnII
60 eqid topGenran.=topGenran.
61 eqid topGenran.𝑡012=topGenran.𝑡012
62 eqid topGenran.𝑡121=topGenran.𝑡121
63 dfii2 II=topGenran.𝑡01
64 0re 0
65 64 a1i FIICnJF0=Y0
66 1re 1
67 66 a1i FIICnJF0=Y1
68 halfre 12
69 halfge0 012
70 halflt1 12<1
71 68 66 70 ltleii 121
72 elicc01 120112012121
73 68 69 71 72 mpbir3an 1201
74 73 a1i FIICnJF0=Y1201
75 simprl FIICnJF0=Yy=12z01y=12
76 75 oveq2d FIICnJF0=Yy=12z012y=212
77 2cn 2
78 2ne0 20
79 77 78 recidi 212=1
80 76 79 eqtrdi FIICnJF0=Yy=12z012y=1
81 80 oveq1d FIICnJF0=Yy=12z012y1=11
82 1m1e0 11=0
83 81 82 eqtr2di FIICnJF0=Yy=12z010=2y1
84 retopon topGenran.TopOn
85 iccssre 012012
86 64 68 85 mp2an 012
87 resttopon topGenran.TopOn012topGenran.𝑡012TopOn012
88 84 86 87 mp2an topGenran.𝑡012TopOn012
89 88 a1i FIICnJF0=YtopGenran.𝑡012TopOn012
90 89 56 56 58 cnmpt2c FIICnJF0=Yy012,z010topGenran.𝑡012×tIICnII
91 iccssre 121121
92 68 66 91 mp2an 121
93 resttopon topGenran.TopOn121topGenran.𝑡121TopOn121
94 84 92 93 mp2an topGenran.𝑡121TopOn121
95 94 a1i FIICnJF0=YtopGenran.𝑡121TopOn121
96 95 56 cnmpt1st FIICnJF0=Yy121,z01ytopGenran.𝑡121×tIICntopGenran.𝑡121
97 62 iihalf2cn x1212x1topGenran.𝑡121CnII
98 97 a1i FIICnJF0=Yx1212x1topGenran.𝑡121CnII
99 oveq2 x=y2x=2y
100 99 oveq1d x=y2x1=2y1
101 95 56 96 95 98 100 cnmpt21 FIICnJF0=Yy121,z012y1topGenran.𝑡121×tIICnII
102 60 61 62 63 65 67 74 56 83 90 101 cnmpopc FIICnJF0=Yy01,z01ify1202y1II×tIICnII
103 breq1 y=xy12x12
104 oveq2 y=x2y=2x
105 104 oveq1d y=x2y1=2x1
106 103 105 ifbieq2d y=xify1202y1=ifx1202x1
107 106 adantr y=xz=0ify1202y1=ifx1202x1
108 56 57 59 56 56 102 107 cnmpt12 FIICnJF0=Yx01ifx1202x1IICnII
109 id x=0x=0
110 109 69 eqbrtrdi x=0x12
111 110 43 syl x=0ifx1202x1=0
112 c0ex 0V
113 111 47 112 fvmpt 001x01ifx1202x10=0
114 8 113 mp1i FIICnJF0=Yx01ifx1202x10=0
115 1elunit 101
116 68 66 ltnlei 12<1¬112
117 70 116 mpbi ¬112
118 breq1 x=1x12112
119 117 118 mtbiri x=1¬x12
120 119 36 syl x=1ifx1202x1=2x1
121 oveq2 x=12x=21
122 2t1e2 21=2
123 121 122 eqtrdi x=12x=2
124 123 oveq1d x=12x1=21
125 2m1e1 21=1
126 124 125 eqtrdi x=12x1=1
127 120 126 eqtrd x=1ifx1202x1=1
128 1ex 1V
129 127 47 128 fvmpt 101x01ifx1202x11=1
130 115 129 mp1i FIICnJF0=Yx01ifx1202x11=1
131 34 108 114 130 reparpht FIICnJF0=YFx01ifx1202x1phJF
132 54 131 eqbrtrd FIICnJF0=YP*𝑝JFphJF