Metamath Proof Explorer


Theorem cnmpt2c

Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmpt21.j φJTopOnX
cnmpt21.k φKTopOnY
cnmpt2c.l φLTopOnZ
cnmpt2c.p φPZ
Assertion cnmpt2c φxX,yYPJ×tKCnL

Proof

Step Hyp Ref Expression
1 cnmpt21.j φJTopOnX
2 cnmpt21.k φKTopOnY
3 cnmpt2c.l φLTopOnZ
4 cnmpt2c.p φPZ
5 eqidd z=xyP=P
6 5 mpompt zX×YP=xX,yYP
7 txtopon JTopOnXKTopOnYJ×tKTopOnX×Y
8 1 2 7 syl2anc φJ×tKTopOnX×Y
9 8 3 4 cnmptc φzX×YPJ×tKCnL
10 6 9 eqeltrrid φxX,yYPJ×tKCnL