| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcopt.1 |
|- P = ( ( 0 [,] 1 ) X. { Y } ) |
| 2 |
1
|
fveq1i |
|- ( P ` ( 2 x. x ) ) = ( ( ( 0 [,] 1 ) X. { Y } ) ` ( 2 x. x ) ) |
| 3 |
|
simpr |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( F ` 0 ) = Y ) |
| 4 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 5 |
|
eqid |
|- U. J = U. J |
| 6 |
4 5
|
cnf |
|- ( F e. ( II Cn J ) -> F : ( 0 [,] 1 ) --> U. J ) |
| 7 |
6
|
adantr |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> F : ( 0 [,] 1 ) --> U. J ) |
| 8 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 9 |
|
ffvelcdm |
|- ( ( F : ( 0 [,] 1 ) --> U. J /\ 0 e. ( 0 [,] 1 ) ) -> ( F ` 0 ) e. U. J ) |
| 10 |
7 8 9
|
sylancl |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( F ` 0 ) e. U. J ) |
| 11 |
3 10
|
eqeltrrd |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> Y e. U. J ) |
| 12 |
|
elii1 |
|- ( x e. ( 0 [,] ( 1 / 2 ) ) <-> ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) ) |
| 13 |
|
iihalf1 |
|- ( x e. ( 0 [,] ( 1 / 2 ) ) -> ( 2 x. x ) e. ( 0 [,] 1 ) ) |
| 14 |
12 13
|
sylbir |
|- ( ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) -> ( 2 x. x ) e. ( 0 [,] 1 ) ) |
| 15 |
|
fvconst2g |
|- ( ( Y e. U. J /\ ( 2 x. x ) e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { Y } ) ` ( 2 x. x ) ) = Y ) |
| 16 |
11 14 15
|
syl2an |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) ) -> ( ( ( 0 [,] 1 ) X. { Y } ) ` ( 2 x. x ) ) = Y ) |
| 17 |
2 16
|
eqtrid |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) ) -> ( P ` ( 2 x. x ) ) = Y ) |
| 18 |
|
simplr |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) ) -> ( F ` 0 ) = Y ) |
| 19 |
17 18
|
eqtr4d |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) ) -> ( P ` ( 2 x. x ) ) = ( F ` 0 ) ) |
| 20 |
19
|
ifeq1d |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) ) -> if ( x <_ ( 1 / 2 ) , ( P ` ( 2 x. x ) ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) = if ( x <_ ( 1 / 2 ) , ( F ` 0 ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) ) |
| 21 |
20
|
expr |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ x e. ( 0 [,] 1 ) ) -> ( x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , ( P ` ( 2 x. x ) ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) = if ( x <_ ( 1 / 2 ) , ( F ` 0 ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
| 22 |
|
iffalse |
|- ( -. x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , ( P ` ( 2 x. x ) ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) = ( F ` ( ( 2 x. x ) - 1 ) ) ) |
| 23 |
|
iffalse |
|- ( -. x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , ( F ` 0 ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) = ( F ` ( ( 2 x. x ) - 1 ) ) ) |
| 24 |
22 23
|
eqtr4d |
|- ( -. x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , ( P ` ( 2 x. x ) ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) = if ( x <_ ( 1 / 2 ) , ( F ` 0 ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) ) |
| 25 |
21 24
|
pm2.61d1 |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ x e. ( 0 [,] 1 ) ) -> if ( x <_ ( 1 / 2 ) , ( P ` ( 2 x. x ) ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) = if ( x <_ ( 1 / 2 ) , ( F ` 0 ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) ) |
| 26 |
25
|
mpteq2dva |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( P ` ( 2 x. x ) ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` 0 ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
| 27 |
|
cntop2 |
|- ( F e. ( II Cn J ) -> J e. Top ) |
| 28 |
27
|
adantr |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> J e. Top ) |
| 29 |
|
toptopon2 |
|- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
| 30 |
28 29
|
sylib |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> J e. ( TopOn ` U. J ) ) |
| 31 |
1
|
pcoptcl |
|- ( ( J e. ( TopOn ` U. J ) /\ Y e. U. J ) -> ( P e. ( II Cn J ) /\ ( P ` 0 ) = Y /\ ( P ` 1 ) = Y ) ) |
| 32 |
30 11 31
|
syl2anc |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( P e. ( II Cn J ) /\ ( P ` 0 ) = Y /\ ( P ` 1 ) = Y ) ) |
| 33 |
32
|
simp1d |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> P e. ( II Cn J ) ) |
| 34 |
|
simpl |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> F e. ( II Cn J ) ) |
| 35 |
33 34
|
pcoval |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( P ( *p ` J ) F ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( P ` ( 2 x. x ) ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
| 36 |
|
iffalse |
|- ( -. x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) = ( ( 2 x. x ) - 1 ) ) |
| 37 |
36
|
adantl |
|- ( ( x e. ( 0 [,] 1 ) /\ -. x <_ ( 1 / 2 ) ) -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) = ( ( 2 x. x ) - 1 ) ) |
| 38 |
|
elii2 |
|- ( ( x e. ( 0 [,] 1 ) /\ -. x <_ ( 1 / 2 ) ) -> x e. ( ( 1 / 2 ) [,] 1 ) ) |
| 39 |
|
iihalf2 |
|- ( x e. ( ( 1 / 2 ) [,] 1 ) -> ( ( 2 x. x ) - 1 ) e. ( 0 [,] 1 ) ) |
| 40 |
38 39
|
syl |
|- ( ( x e. ( 0 [,] 1 ) /\ -. x <_ ( 1 / 2 ) ) -> ( ( 2 x. x ) - 1 ) e. ( 0 [,] 1 ) ) |
| 41 |
37 40
|
eqeltrd |
|- ( ( x e. ( 0 [,] 1 ) /\ -. x <_ ( 1 / 2 ) ) -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) e. ( 0 [,] 1 ) ) |
| 42 |
41
|
ex |
|- ( x e. ( 0 [,] 1 ) -> ( -. x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) e. ( 0 [,] 1 ) ) ) |
| 43 |
|
iftrue |
|- ( x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) = 0 ) |
| 44 |
43 8
|
eqeltrdi |
|- ( x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) e. ( 0 [,] 1 ) ) |
| 45 |
42 44
|
pm2.61d2 |
|- ( x e. ( 0 [,] 1 ) -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) e. ( 0 [,] 1 ) ) |
| 46 |
45
|
adantl |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ x e. ( 0 [,] 1 ) ) -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) e. ( 0 [,] 1 ) ) |
| 47 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) |
| 48 |
47
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) ) |
| 49 |
7
|
feqmptd |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> F = ( y e. ( 0 [,] 1 ) |-> ( F ` y ) ) ) |
| 50 |
|
fveq2 |
|- ( y = if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) -> ( F ` y ) = ( F ` if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) ) |
| 51 |
|
fvif |
|- ( F ` if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) = if ( x <_ ( 1 / 2 ) , ( F ` 0 ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) |
| 52 |
50 51
|
eqtrdi |
|- ( y = if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) -> ( F ` y ) = if ( x <_ ( 1 / 2 ) , ( F ` 0 ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) ) |
| 53 |
46 48 49 52
|
fmptco |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( F o. ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` 0 ) , ( F ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
| 54 |
26 35 53
|
3eqtr4d |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( P ( *p ` J ) F ) = ( F o. ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) ) ) |
| 55 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 56 |
55
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 57 |
56
|
cnmptid |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( x e. ( 0 [,] 1 ) |-> x ) e. ( II Cn II ) ) |
| 58 |
8
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> 0 e. ( 0 [,] 1 ) ) |
| 59 |
56 56 58
|
cnmptc |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( x e. ( 0 [,] 1 ) |-> 0 ) e. ( II Cn II ) ) |
| 60 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 61 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) |
| 62 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) = ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) |
| 63 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
| 64 |
|
0re |
|- 0 e. RR |
| 65 |
64
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> 0 e. RR ) |
| 66 |
|
1re |
|- 1 e. RR |
| 67 |
66
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> 1 e. RR ) |
| 68 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 69 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
| 70 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 71 |
68 66 70
|
ltleii |
|- ( 1 / 2 ) <_ 1 |
| 72 |
|
elicc01 |
|- ( ( 1 / 2 ) e. ( 0 [,] 1 ) <-> ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) <_ 1 ) ) |
| 73 |
68 69 71 72
|
mpbir3an |
|- ( 1 / 2 ) e. ( 0 [,] 1 ) |
| 74 |
73
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( 1 / 2 ) e. ( 0 [,] 1 ) ) |
| 75 |
|
simprl |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> y = ( 1 / 2 ) ) |
| 76 |
75
|
oveq2d |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( 2 x. y ) = ( 2 x. ( 1 / 2 ) ) ) |
| 77 |
|
2cn |
|- 2 e. CC |
| 78 |
|
2ne0 |
|- 2 =/= 0 |
| 79 |
77 78
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
| 80 |
76 79
|
eqtrdi |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( 2 x. y ) = 1 ) |
| 81 |
80
|
oveq1d |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( ( 2 x. y ) - 1 ) = ( 1 - 1 ) ) |
| 82 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 83 |
81 82
|
eqtr2di |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> 0 = ( ( 2 x. y ) - 1 ) ) |
| 84 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 85 |
|
iccssre |
|- ( ( 0 e. RR /\ ( 1 / 2 ) e. RR ) -> ( 0 [,] ( 1 / 2 ) ) C_ RR ) |
| 86 |
64 68 85
|
mp2an |
|- ( 0 [,] ( 1 / 2 ) ) C_ RR |
| 87 |
|
resttopon |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ ( 0 [,] ( 1 / 2 ) ) C_ RR ) -> ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) e. ( TopOn ` ( 0 [,] ( 1 / 2 ) ) ) ) |
| 88 |
84 86 87
|
mp2an |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) e. ( TopOn ` ( 0 [,] ( 1 / 2 ) ) ) |
| 89 |
88
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) e. ( TopOn ` ( 0 [,] ( 1 / 2 ) ) ) ) |
| 90 |
89 56 56 58
|
cnmpt2c |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( y e. ( 0 [,] ( 1 / 2 ) ) , z e. ( 0 [,] 1 ) |-> 0 ) e. ( ( ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) tX II ) Cn II ) ) |
| 91 |
|
iccssre |
|- ( ( ( 1 / 2 ) e. RR /\ 1 e. RR ) -> ( ( 1 / 2 ) [,] 1 ) C_ RR ) |
| 92 |
68 66 91
|
mp2an |
|- ( ( 1 / 2 ) [,] 1 ) C_ RR |
| 93 |
|
resttopon |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ ( ( 1 / 2 ) [,] 1 ) C_ RR ) -> ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) e. ( TopOn ` ( ( 1 / 2 ) [,] 1 ) ) ) |
| 94 |
84 92 93
|
mp2an |
|- ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) e. ( TopOn ` ( ( 1 / 2 ) [,] 1 ) ) |
| 95 |
94
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) e. ( TopOn ` ( ( 1 / 2 ) [,] 1 ) ) ) |
| 96 |
95 56
|
cnmpt1st |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( y e. ( ( 1 / 2 ) [,] 1 ) , z e. ( 0 [,] 1 ) |-> y ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) tX II ) Cn ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) ) ) |
| 97 |
62
|
iihalf2cn |
|- ( x e. ( ( 1 / 2 ) [,] 1 ) |-> ( ( 2 x. x ) - 1 ) ) e. ( ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) |
| 98 |
97
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( x e. ( ( 1 / 2 ) [,] 1 ) |-> ( ( 2 x. x ) - 1 ) ) e. ( ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) Cn II ) ) |
| 99 |
|
oveq2 |
|- ( x = y -> ( 2 x. x ) = ( 2 x. y ) ) |
| 100 |
99
|
oveq1d |
|- ( x = y -> ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) |
| 101 |
95 56 96 95 98 100
|
cnmpt21 |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( y e. ( ( 1 / 2 ) [,] 1 ) , z e. ( 0 [,] 1 ) |-> ( ( 2 x. y ) - 1 ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) tX II ) Cn II ) ) |
| 102 |
60 61 62 63 65 67 74 56 83 90 101
|
cnmpopc |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( y e. ( 0 [,] 1 ) , z e. ( 0 [,] 1 ) |-> if ( y <_ ( 1 / 2 ) , 0 , ( ( 2 x. y ) - 1 ) ) ) e. ( ( II tX II ) Cn II ) ) |
| 103 |
|
breq1 |
|- ( y = x -> ( y <_ ( 1 / 2 ) <-> x <_ ( 1 / 2 ) ) ) |
| 104 |
|
oveq2 |
|- ( y = x -> ( 2 x. y ) = ( 2 x. x ) ) |
| 105 |
104
|
oveq1d |
|- ( y = x -> ( ( 2 x. y ) - 1 ) = ( ( 2 x. x ) - 1 ) ) |
| 106 |
103 105
|
ifbieq2d |
|- ( y = x -> if ( y <_ ( 1 / 2 ) , 0 , ( ( 2 x. y ) - 1 ) ) = if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) |
| 107 |
106
|
adantr |
|- ( ( y = x /\ z = 0 ) -> if ( y <_ ( 1 / 2 ) , 0 , ( ( 2 x. y ) - 1 ) ) = if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) |
| 108 |
56 57 59 56 56 102 107
|
cnmpt12 |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) e. ( II Cn II ) ) |
| 109 |
|
id |
|- ( x = 0 -> x = 0 ) |
| 110 |
109 69
|
eqbrtrdi |
|- ( x = 0 -> x <_ ( 1 / 2 ) ) |
| 111 |
110 43
|
syl |
|- ( x = 0 -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) = 0 ) |
| 112 |
|
c0ex |
|- 0 e. _V |
| 113 |
111 47 112
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) ` 0 ) = 0 ) |
| 114 |
8 113
|
mp1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) ` 0 ) = 0 ) |
| 115 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 116 |
68 66
|
ltnlei |
|- ( ( 1 / 2 ) < 1 <-> -. 1 <_ ( 1 / 2 ) ) |
| 117 |
70 116
|
mpbi |
|- -. 1 <_ ( 1 / 2 ) |
| 118 |
|
breq1 |
|- ( x = 1 -> ( x <_ ( 1 / 2 ) <-> 1 <_ ( 1 / 2 ) ) ) |
| 119 |
117 118
|
mtbiri |
|- ( x = 1 -> -. x <_ ( 1 / 2 ) ) |
| 120 |
119 36
|
syl |
|- ( x = 1 -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) = ( ( 2 x. x ) - 1 ) ) |
| 121 |
|
oveq2 |
|- ( x = 1 -> ( 2 x. x ) = ( 2 x. 1 ) ) |
| 122 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 123 |
121 122
|
eqtrdi |
|- ( x = 1 -> ( 2 x. x ) = 2 ) |
| 124 |
123
|
oveq1d |
|- ( x = 1 -> ( ( 2 x. x ) - 1 ) = ( 2 - 1 ) ) |
| 125 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 126 |
124 125
|
eqtrdi |
|- ( x = 1 -> ( ( 2 x. x ) - 1 ) = 1 ) |
| 127 |
120 126
|
eqtrd |
|- ( x = 1 -> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) = 1 ) |
| 128 |
|
1ex |
|- 1 e. _V |
| 129 |
127 47 128
|
fvmpt |
|- ( 1 e. ( 0 [,] 1 ) -> ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) ` 1 ) = 1 ) |
| 130 |
115 129
|
mp1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) ` 1 ) = 1 ) |
| 131 |
34 108 114 130
|
reparpht |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( F o. ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , 0 , ( ( 2 x. x ) - 1 ) ) ) ) ( ~=ph ` J ) F ) |
| 132 |
54 131
|
eqbrtrd |
|- ( ( F e. ( II Cn J ) /\ ( F ` 0 ) = Y ) -> ( P ( *p ` J ) F ) ( ~=ph ` J ) F ) |