| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcopt.1 |
|- P = ( ( 0 [,] 1 ) X. { Y } ) |
| 2 |
1
|
fveq1i |
|- ( P ` ( ( 2 x. x ) - 1 ) ) = ( ( ( 0 [,] 1 ) X. { Y } ) ` ( ( 2 x. x ) - 1 ) ) |
| 3 |
|
simpr |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( F ` 1 ) = Y ) |
| 4 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 5 |
|
eqid |
|- U. J = U. J |
| 6 |
4 5
|
cnf |
|- ( F e. ( II Cn J ) -> F : ( 0 [,] 1 ) --> U. J ) |
| 7 |
6
|
adantr |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> F : ( 0 [,] 1 ) --> U. J ) |
| 8 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 9 |
|
ffvelcdm |
|- ( ( F : ( 0 [,] 1 ) --> U. J /\ 1 e. ( 0 [,] 1 ) ) -> ( F ` 1 ) e. U. J ) |
| 10 |
7 8 9
|
sylancl |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( F ` 1 ) e. U. J ) |
| 11 |
3 10
|
eqeltrrd |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> Y e. U. J ) |
| 12 |
|
elii2 |
|- ( ( x e. ( 0 [,] 1 ) /\ -. x <_ ( 1 / 2 ) ) -> x e. ( ( 1 / 2 ) [,] 1 ) ) |
| 13 |
|
iihalf2 |
|- ( x e. ( ( 1 / 2 ) [,] 1 ) -> ( ( 2 x. x ) - 1 ) e. ( 0 [,] 1 ) ) |
| 14 |
12 13
|
syl |
|- ( ( x e. ( 0 [,] 1 ) /\ -. x <_ ( 1 / 2 ) ) -> ( ( 2 x. x ) - 1 ) e. ( 0 [,] 1 ) ) |
| 15 |
|
fvconst2g |
|- ( ( Y e. U. J /\ ( ( 2 x. x ) - 1 ) e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { Y } ) ` ( ( 2 x. x ) - 1 ) ) = Y ) |
| 16 |
11 14 15
|
syl2an |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) /\ ( x e. ( 0 [,] 1 ) /\ -. x <_ ( 1 / 2 ) ) ) -> ( ( ( 0 [,] 1 ) X. { Y } ) ` ( ( 2 x. x ) - 1 ) ) = Y ) |
| 17 |
2 16
|
eqtrid |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) /\ ( x e. ( 0 [,] 1 ) /\ -. x <_ ( 1 / 2 ) ) ) -> ( P ` ( ( 2 x. x ) - 1 ) ) = Y ) |
| 18 |
|
simplr |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) /\ ( x e. ( 0 [,] 1 ) /\ -. x <_ ( 1 / 2 ) ) ) -> ( F ` 1 ) = Y ) |
| 19 |
17 18
|
eqtr4d |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) /\ ( x e. ( 0 [,] 1 ) /\ -. x <_ ( 1 / 2 ) ) ) -> ( P ` ( ( 2 x. x ) - 1 ) ) = ( F ` 1 ) ) |
| 20 |
19
|
anassrs |
|- ( ( ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) /\ x e. ( 0 [,] 1 ) ) /\ -. x <_ ( 1 / 2 ) ) -> ( P ` ( ( 2 x. x ) - 1 ) ) = ( F ` 1 ) ) |
| 21 |
20
|
ifeq2da |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) /\ x e. ( 0 [,] 1 ) ) -> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( P ` ( ( 2 x. x ) - 1 ) ) ) = if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( F ` 1 ) ) ) |
| 22 |
21
|
mpteq2dva |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( P ` ( ( 2 x. x ) - 1 ) ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( F ` 1 ) ) ) ) |
| 23 |
|
simpl |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> F e. ( II Cn J ) ) |
| 24 |
|
cntop2 |
|- ( F e. ( II Cn J ) -> J e. Top ) |
| 25 |
24
|
adantr |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> J e. Top ) |
| 26 |
|
toptopon2 |
|- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
| 27 |
25 26
|
sylib |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> J e. ( TopOn ` U. J ) ) |
| 28 |
1
|
pcoptcl |
|- ( ( J e. ( TopOn ` U. J ) /\ Y e. U. J ) -> ( P e. ( II Cn J ) /\ ( P ` 0 ) = Y /\ ( P ` 1 ) = Y ) ) |
| 29 |
27 11 28
|
syl2anc |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( P e. ( II Cn J ) /\ ( P ` 0 ) = Y /\ ( P ` 1 ) = Y ) ) |
| 30 |
29
|
simp1d |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> P e. ( II Cn J ) ) |
| 31 |
23 30
|
pcoval |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( F ( *p ` J ) P ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( P ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
| 32 |
|
iftrue |
|- ( x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) = ( 2 x. x ) ) |
| 33 |
32
|
adantl |
|- ( ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) = ( 2 x. x ) ) |
| 34 |
|
elii1 |
|- ( x e. ( 0 [,] ( 1 / 2 ) ) <-> ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) ) |
| 35 |
|
iihalf1 |
|- ( x e. ( 0 [,] ( 1 / 2 ) ) -> ( 2 x. x ) e. ( 0 [,] 1 ) ) |
| 36 |
34 35
|
sylbir |
|- ( ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) -> ( 2 x. x ) e. ( 0 [,] 1 ) ) |
| 37 |
33 36
|
eqeltrd |
|- ( ( x e. ( 0 [,] 1 ) /\ x <_ ( 1 / 2 ) ) -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) e. ( 0 [,] 1 ) ) |
| 38 |
37
|
ex |
|- ( x e. ( 0 [,] 1 ) -> ( x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) e. ( 0 [,] 1 ) ) ) |
| 39 |
|
iffalse |
|- ( -. x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) = 1 ) |
| 40 |
39 8
|
eqeltrdi |
|- ( -. x <_ ( 1 / 2 ) -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) e. ( 0 [,] 1 ) ) |
| 41 |
38 40
|
pm2.61d1 |
|- ( x e. ( 0 [,] 1 ) -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) e. ( 0 [,] 1 ) ) |
| 42 |
41
|
adantl |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) /\ x e. ( 0 [,] 1 ) ) -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) e. ( 0 [,] 1 ) ) |
| 43 |
|
eqidd |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) ) |
| 44 |
7
|
feqmptd |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> F = ( y e. ( 0 [,] 1 ) |-> ( F ` y ) ) ) |
| 45 |
|
fveq2 |
|- ( y = if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) -> ( F ` y ) = ( F ` if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) ) |
| 46 |
|
fvif |
|- ( F ` if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) = if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( F ` 1 ) ) |
| 47 |
45 46
|
eqtrdi |
|- ( y = if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) -> ( F ` y ) = if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( F ` 1 ) ) ) |
| 48 |
42 43 44 47
|
fmptco |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( F o. ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( F ` 1 ) ) ) ) |
| 49 |
22 31 48
|
3eqtr4d |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( F ( *p ` J ) P ) = ( F o. ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) ) ) |
| 50 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 51 |
50
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 52 |
51
|
cnmptid |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( x e. ( 0 [,] 1 ) |-> x ) e. ( II Cn II ) ) |
| 53 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 54 |
53
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> 0 e. ( 0 [,] 1 ) ) |
| 55 |
51 51 54
|
cnmptc |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( x e. ( 0 [,] 1 ) |-> 0 ) e. ( II Cn II ) ) |
| 56 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 57 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) |
| 58 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) = ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) |
| 59 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
| 60 |
|
0re |
|- 0 e. RR |
| 61 |
60
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> 0 e. RR ) |
| 62 |
|
1re |
|- 1 e. RR |
| 63 |
62
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> 1 e. RR ) |
| 64 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 65 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
| 66 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 67 |
64 62 66
|
ltleii |
|- ( 1 / 2 ) <_ 1 |
| 68 |
|
elicc01 |
|- ( ( 1 / 2 ) e. ( 0 [,] 1 ) <-> ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) <_ 1 ) ) |
| 69 |
64 65 67 68
|
mpbir3an |
|- ( 1 / 2 ) e. ( 0 [,] 1 ) |
| 70 |
69
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( 1 / 2 ) e. ( 0 [,] 1 ) ) |
| 71 |
|
simprl |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> y = ( 1 / 2 ) ) |
| 72 |
71
|
oveq2d |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( 2 x. y ) = ( 2 x. ( 1 / 2 ) ) ) |
| 73 |
|
2cn |
|- 2 e. CC |
| 74 |
|
2ne0 |
|- 2 =/= 0 |
| 75 |
73 74
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
| 76 |
72 75
|
eqtrdi |
|- ( ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) /\ ( y = ( 1 / 2 ) /\ z e. ( 0 [,] 1 ) ) ) -> ( 2 x. y ) = 1 ) |
| 77 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 78 |
|
iccssre |
|- ( ( 0 e. RR /\ ( 1 / 2 ) e. RR ) -> ( 0 [,] ( 1 / 2 ) ) C_ RR ) |
| 79 |
60 64 78
|
mp2an |
|- ( 0 [,] ( 1 / 2 ) ) C_ RR |
| 80 |
|
resttopon |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ ( 0 [,] ( 1 / 2 ) ) C_ RR ) -> ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) e. ( TopOn ` ( 0 [,] ( 1 / 2 ) ) ) ) |
| 81 |
77 79 80
|
mp2an |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) e. ( TopOn ` ( 0 [,] ( 1 / 2 ) ) ) |
| 82 |
81
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) e. ( TopOn ` ( 0 [,] ( 1 / 2 ) ) ) ) |
| 83 |
82 51
|
cnmpt1st |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( y e. ( 0 [,] ( 1 / 2 ) ) , z e. ( 0 [,] 1 ) |-> y ) e. ( ( ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) tX II ) Cn ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) ) ) |
| 84 |
57
|
iihalf1cn |
|- ( x e. ( 0 [,] ( 1 / 2 ) ) |-> ( 2 x. x ) ) e. ( ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) |
| 85 |
84
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( x e. ( 0 [,] ( 1 / 2 ) ) |-> ( 2 x. x ) ) e. ( ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) Cn II ) ) |
| 86 |
|
oveq2 |
|- ( x = y -> ( 2 x. x ) = ( 2 x. y ) ) |
| 87 |
82 51 83 82 85 86
|
cnmpt21 |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( y e. ( 0 [,] ( 1 / 2 ) ) , z e. ( 0 [,] 1 ) |-> ( 2 x. y ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( 0 [,] ( 1 / 2 ) ) ) tX II ) Cn II ) ) |
| 88 |
|
iccssre |
|- ( ( ( 1 / 2 ) e. RR /\ 1 e. RR ) -> ( ( 1 / 2 ) [,] 1 ) C_ RR ) |
| 89 |
64 62 88
|
mp2an |
|- ( ( 1 / 2 ) [,] 1 ) C_ RR |
| 90 |
|
resttopon |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ ( ( 1 / 2 ) [,] 1 ) C_ RR ) -> ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) e. ( TopOn ` ( ( 1 / 2 ) [,] 1 ) ) ) |
| 91 |
77 89 90
|
mp2an |
|- ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) e. ( TopOn ` ( ( 1 / 2 ) [,] 1 ) ) |
| 92 |
91
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) e. ( TopOn ` ( ( 1 / 2 ) [,] 1 ) ) ) |
| 93 |
8
|
a1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> 1 e. ( 0 [,] 1 ) ) |
| 94 |
92 51 51 93
|
cnmpt2c |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( y e. ( ( 1 / 2 ) [,] 1 ) , z e. ( 0 [,] 1 ) |-> 1 ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( 1 / 2 ) [,] 1 ) ) tX II ) Cn II ) ) |
| 95 |
56 57 58 59 61 63 70 51 76 87 94
|
cnmpopc |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( y e. ( 0 [,] 1 ) , z e. ( 0 [,] 1 ) |-> if ( y <_ ( 1 / 2 ) , ( 2 x. y ) , 1 ) ) e. ( ( II tX II ) Cn II ) ) |
| 96 |
|
breq1 |
|- ( y = x -> ( y <_ ( 1 / 2 ) <-> x <_ ( 1 / 2 ) ) ) |
| 97 |
|
oveq2 |
|- ( y = x -> ( 2 x. y ) = ( 2 x. x ) ) |
| 98 |
96 97
|
ifbieq1d |
|- ( y = x -> if ( y <_ ( 1 / 2 ) , ( 2 x. y ) , 1 ) = if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) |
| 99 |
98
|
adantr |
|- ( ( y = x /\ z = 0 ) -> if ( y <_ ( 1 / 2 ) , ( 2 x. y ) , 1 ) = if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) |
| 100 |
51 52 55 51 51 95 99
|
cnmpt12 |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) e. ( II Cn II ) ) |
| 101 |
|
id |
|- ( x = 0 -> x = 0 ) |
| 102 |
101 65
|
eqbrtrdi |
|- ( x = 0 -> x <_ ( 1 / 2 ) ) |
| 103 |
102 32
|
syl |
|- ( x = 0 -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) = ( 2 x. x ) ) |
| 104 |
|
oveq2 |
|- ( x = 0 -> ( 2 x. x ) = ( 2 x. 0 ) ) |
| 105 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
| 106 |
104 105
|
eqtrdi |
|- ( x = 0 -> ( 2 x. x ) = 0 ) |
| 107 |
103 106
|
eqtrd |
|- ( x = 0 -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) = 0 ) |
| 108 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) |
| 109 |
|
c0ex |
|- 0 e. _V |
| 110 |
107 108 109
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) ` 0 ) = 0 ) |
| 111 |
53 110
|
mp1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) ` 0 ) = 0 ) |
| 112 |
64 62
|
ltnlei |
|- ( ( 1 / 2 ) < 1 <-> -. 1 <_ ( 1 / 2 ) ) |
| 113 |
66 112
|
mpbi |
|- -. 1 <_ ( 1 / 2 ) |
| 114 |
|
breq1 |
|- ( x = 1 -> ( x <_ ( 1 / 2 ) <-> 1 <_ ( 1 / 2 ) ) ) |
| 115 |
113 114
|
mtbiri |
|- ( x = 1 -> -. x <_ ( 1 / 2 ) ) |
| 116 |
115 39
|
syl |
|- ( x = 1 -> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) = 1 ) |
| 117 |
|
1ex |
|- 1 e. _V |
| 118 |
116 108 117
|
fvmpt |
|- ( 1 e. ( 0 [,] 1 ) -> ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) ` 1 ) = 1 ) |
| 119 |
8 118
|
mp1i |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) ` 1 ) = 1 ) |
| 120 |
23 100 111 119
|
reparpht |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( F o. ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( 2 x. x ) , 1 ) ) ) ( ~=ph ` J ) F ) |
| 121 |
49 120
|
eqbrtrd |
|- ( ( F e. ( II Cn J ) /\ ( F ` 1 ) = Y ) -> ( F ( *p ` J ) P ) ( ~=ph ` J ) F ) |