Step |
Hyp |
Ref |
Expression |
1 |
|
pcohtpy.4 |
|
2 |
|
pcohtpy.5 |
|
3 |
|
pcohtpy.6 |
|
4 |
|
pcohtpylem.7 |
|
5 |
|
pcohtpylem.8 |
|
6 |
|
pcohtpylem.9 |
|
7 |
|
isphtpc |
|
8 |
2 7
|
sylib |
|
9 |
8
|
simp1d |
|
10 |
|
isphtpc |
|
11 |
3 10
|
sylib |
|
12 |
11
|
simp1d |
|
13 |
9 12 1
|
pcocn |
|
14 |
8
|
simp2d |
|
15 |
11
|
simp2d |
|
16 |
9 14 5
|
phtpy01 |
|
17 |
16
|
simprd |
|
18 |
12 15 6
|
phtpy01 |
|
19 |
18
|
simpld |
|
20 |
1 17 19
|
3eqtr3d |
|
21 |
14 15 20
|
pcocn |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
|
dfii2 |
|
26 |
|
0red |
|
27 |
|
1red |
|
28 |
|
halfre |
|
29 |
|
halfge0 |
|
30 |
|
1re |
|
31 |
|
halflt1 |
|
32 |
28 30 31
|
ltleii |
|
33 |
|
elicc01 |
|
34 |
28 29 32 33
|
mpbir3an |
|
35 |
34
|
a1i |
|
36 |
|
iitopon |
|
37 |
36
|
a1i |
|
38 |
1
|
adantr |
|
39 |
9 14 5
|
phtpyi |
|
40 |
39
|
simprd |
|
41 |
40
|
adantrl |
|
42 |
12 15 6
|
phtpyi |
|
43 |
42
|
simpld |
|
44 |
43
|
adantrl |
|
45 |
38 41 44
|
3eqtr4d |
|
46 |
|
simprl |
|
47 |
46
|
oveq2d |
|
48 |
|
2cn |
|
49 |
|
2ne0 |
|
50 |
48 49
|
recidi |
|
51 |
47 50
|
eqtrdi |
|
52 |
51
|
oveq1d |
|
53 |
51
|
oveq1d |
|
54 |
|
1m1e0 |
|
55 |
53 54
|
eqtrdi |
|
56 |
55
|
oveq1d |
|
57 |
45 52 56
|
3eqtr4d |
|
58 |
|
retopon |
|
59 |
|
0re |
|
60 |
|
iccssre |
|
61 |
59 28 60
|
mp2an |
|
62 |
|
resttopon |
|
63 |
58 61 62
|
mp2an |
|
64 |
63
|
a1i |
|
65 |
64 37
|
cnmpt1st |
|
66 |
23
|
iihalf1cn |
|
67 |
66
|
a1i |
|
68 |
|
oveq2 |
|
69 |
64 37 65 64 67 68
|
cnmpt21 |
|
70 |
64 37
|
cnmpt2nd |
|
71 |
9 14
|
phtpycn |
|
72 |
71 5
|
sseldd |
|
73 |
64 37 69 70 72
|
cnmpt22f |
|
74 |
|
iccssre |
|
75 |
28 30 74
|
mp2an |
|
76 |
|
resttopon |
|
77 |
58 75 76
|
mp2an |
|
78 |
77
|
a1i |
|
79 |
78 37
|
cnmpt1st |
|
80 |
24
|
iihalf2cn |
|
81 |
80
|
a1i |
|
82 |
68
|
oveq1d |
|
83 |
78 37 79 78 81 82
|
cnmpt21 |
|
84 |
78 37
|
cnmpt2nd |
|
85 |
12 15
|
phtpycn |
|
86 |
85 6
|
sseldd |
|
87 |
78 37 83 84 86
|
cnmpt22f |
|
88 |
22 23 24 25 26 27 35 37 57 73 87
|
cnmpopc |
|
89 |
4 88
|
eqeltrid |
|
90 |
|
simpll |
|
91 |
|
elii1 |
|
92 |
|
iihalf1 |
|
93 |
91 92
|
sylbir |
|
94 |
93
|
adantll |
|
95 |
9 14
|
phtpyhtpy |
|
96 |
95 5
|
sseldd |
|
97 |
37 9 14 96
|
htpyi |
|
98 |
90 94 97
|
syl2anc |
|
99 |
98
|
simpld |
|
100 |
|
simpll |
|
101 |
|
elii2 |
|
102 |
101
|
adantll |
|
103 |
|
iihalf2 |
|
104 |
102 103
|
syl |
|
105 |
12 15
|
phtpyhtpy |
|
106 |
105 6
|
sseldd |
|
107 |
37 12 15 106
|
htpyi |
|
108 |
100 104 107
|
syl2anc |
|
109 |
108
|
simpld |
|
110 |
99 109
|
ifeq12da |
|
111 |
|
simpr |
|
112 |
|
0elunit |
|
113 |
|
simpl |
|
114 |
113
|
breq1d |
|
115 |
113
|
oveq2d |
|
116 |
|
simpr |
|
117 |
115 116
|
oveq12d |
|
118 |
115
|
oveq1d |
|
119 |
118 116
|
oveq12d |
|
120 |
114 117 119
|
ifbieq12d |
|
121 |
|
ovex |
|
122 |
|
ovex |
|
123 |
121 122
|
ifex |
|
124 |
120 4 123
|
ovmpoa |
|
125 |
111 112 124
|
sylancl |
|
126 |
9 12
|
pcovalg |
|
127 |
110 125 126
|
3eqtr4d |
|
128 |
98
|
simprd |
|
129 |
108
|
simprd |
|
130 |
128 129
|
ifeq12da |
|
131 |
|
1elunit |
|
132 |
|
simpl |
|
133 |
132
|
breq1d |
|
134 |
132
|
oveq2d |
|
135 |
|
simpr |
|
136 |
134 135
|
oveq12d |
|
137 |
134
|
oveq1d |
|
138 |
137 135
|
oveq12d |
|
139 |
133 136 138
|
ifbieq12d |
|
140 |
|
ovex |
|
141 |
|
ovex |
|
142 |
140 141
|
ifex |
|
143 |
139 4 142
|
ovmpoa |
|
144 |
111 131 143
|
sylancl |
|
145 |
14 15
|
pcovalg |
|
146 |
130 144 145
|
3eqtr4d |
|
147 |
9 14 5
|
phtpyi |
|
148 |
147
|
simpld |
|
149 |
|
simpl |
|
150 |
149 29
|
eqbrtrdi |
|
151 |
150
|
iftrued |
|
152 |
149
|
oveq2d |
|
153 |
|
2t0e0 |
|
154 |
152 153
|
eqtrdi |
|
155 |
|
simpr |
|
156 |
154 155
|
oveq12d |
|
157 |
151 156
|
eqtrd |
|
158 |
|
ovex |
|
159 |
157 4 158
|
ovmpoa |
|
160 |
112 111 159
|
sylancr |
|
161 |
9 12
|
pco0 |
|
162 |
161
|
adantr |
|
163 |
148 160 162
|
3eqtr4d |
|
164 |
12 15 6
|
phtpyi |
|
165 |
164
|
simprd |
|
166 |
28 30
|
ltnlei |
|
167 |
31 166
|
mpbi |
|
168 |
|
simpl |
|
169 |
168
|
breq1d |
|
170 |
167 169
|
mtbiri |
|
171 |
170
|
iffalsed |
|
172 |
168
|
oveq2d |
|
173 |
|
2t1e2 |
|
174 |
172 173
|
eqtrdi |
|
175 |
174
|
oveq1d |
|
176 |
|
2m1e1 |
|
177 |
175 176
|
eqtrdi |
|
178 |
|
simpr |
|
179 |
177 178
|
oveq12d |
|
180 |
171 179
|
eqtrd |
|
181 |
|
ovex |
|
182 |
180 4 181
|
ovmpoa |
|
183 |
131 111 182
|
sylancr |
|
184 |
9 12
|
pco1 |
|
185 |
184
|
adantr |
|
186 |
165 183 185
|
3eqtr4d |
|
187 |
13 21 89 127 146 163 186
|
isphtpy2d |
|