Metamath Proof Explorer


Theorem pcohtpylem

Description: Lemma for pcohtpy . (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses pcohtpy.4 φ F 1 = G 0
pcohtpy.5 φ F ph J H
pcohtpy.6 φ G ph J K
pcohtpylem.7 P = x 0 1 , y 0 1 if x 1 2 2 x M y 2 x 1 N y
pcohtpylem.8 φ M F PHtpy J H
pcohtpylem.9 φ N G PHtpy J K
Assertion pcohtpylem φ P F * 𝑝 J G PHtpy J H * 𝑝 J K

Proof

Step Hyp Ref Expression
1 pcohtpy.4 φ F 1 = G 0
2 pcohtpy.5 φ F ph J H
3 pcohtpy.6 φ G ph J K
4 pcohtpylem.7 P = x 0 1 , y 0 1 if x 1 2 2 x M y 2 x 1 N y
5 pcohtpylem.8 φ M F PHtpy J H
6 pcohtpylem.9 φ N G PHtpy J K
7 isphtpc F ph J H F II Cn J H II Cn J F PHtpy J H
8 2 7 sylib φ F II Cn J H II Cn J F PHtpy J H
9 8 simp1d φ F II Cn J
10 isphtpc G ph J K G II Cn J K II Cn J G PHtpy J K
11 3 10 sylib φ G II Cn J K II Cn J G PHtpy J K
12 11 simp1d φ G II Cn J
13 9 12 1 pcocn φ F * 𝑝 J G II Cn J
14 8 simp2d φ H II Cn J
15 11 simp2d φ K II Cn J
16 9 14 5 phtpy01 φ F 0 = H 0 F 1 = H 1
17 16 simprd φ F 1 = H 1
18 12 15 6 phtpy01 φ G 0 = K 0 G 1 = K 1
19 18 simpld φ G 0 = K 0
20 1 17 19 3eqtr3d φ H 1 = K 0
21 14 15 20 pcocn φ H * 𝑝 J K II Cn J
22 eqid topGen ran . = topGen ran .
23 eqid topGen ran . 𝑡 0 1 2 = topGen ran . 𝑡 0 1 2
24 eqid topGen ran . 𝑡 1 2 1 = topGen ran . 𝑡 1 2 1
25 dfii2 II = topGen ran . 𝑡 0 1
26 0red φ 0
27 1red φ 1
28 halfre 1 2
29 halfge0 0 1 2
30 1re 1
31 halflt1 1 2 < 1
32 28 30 31 ltleii 1 2 1
33 elicc01 1 2 0 1 1 2 0 1 2 1 2 1
34 28 29 32 33 mpbir3an 1 2 0 1
35 34 a1i φ 1 2 0 1
36 iitopon II TopOn 0 1
37 36 a1i φ II TopOn 0 1
38 1 adantr φ x = 1 2 y 0 1 F 1 = G 0
39 9 14 5 phtpyi φ y 0 1 0 M y = F 0 1 M y = F 1
40 39 simprd φ y 0 1 1 M y = F 1
41 40 adantrl φ x = 1 2 y 0 1 1 M y = F 1
42 12 15 6 phtpyi φ y 0 1 0 N y = G 0 1 N y = G 1
43 42 simpld φ y 0 1 0 N y = G 0
44 43 adantrl φ x = 1 2 y 0 1 0 N y = G 0
45 38 41 44 3eqtr4d φ x = 1 2 y 0 1 1 M y = 0 N y
46 simprl φ x = 1 2 y 0 1 x = 1 2
47 46 oveq2d φ x = 1 2 y 0 1 2 x = 2 1 2
48 2cn 2
49 2ne0 2 0
50 48 49 recidi 2 1 2 = 1
51 47 50 eqtrdi φ x = 1 2 y 0 1 2 x = 1
52 51 oveq1d φ x = 1 2 y 0 1 2 x M y = 1 M y
53 51 oveq1d φ x = 1 2 y 0 1 2 x 1 = 1 1
54 1m1e0 1 1 = 0
55 53 54 eqtrdi φ x = 1 2 y 0 1 2 x 1 = 0
56 55 oveq1d φ x = 1 2 y 0 1 2 x 1 N y = 0 N y
57 45 52 56 3eqtr4d φ x = 1 2 y 0 1 2 x M y = 2 x 1 N y
58 retopon topGen ran . TopOn
59 0re 0
60 iccssre 0 1 2 0 1 2
61 59 28 60 mp2an 0 1 2
62 resttopon topGen ran . TopOn 0 1 2 topGen ran . 𝑡 0 1 2 TopOn 0 1 2
63 58 61 62 mp2an topGen ran . 𝑡 0 1 2 TopOn 0 1 2
64 63 a1i φ topGen ran . 𝑡 0 1 2 TopOn 0 1 2
65 64 37 cnmpt1st φ x 0 1 2 , y 0 1 x topGen ran . 𝑡 0 1 2 × t II Cn topGen ran . 𝑡 0 1 2
66 23 iihalf1cn z 0 1 2 2 z topGen ran . 𝑡 0 1 2 Cn II
67 66 a1i φ z 0 1 2 2 z topGen ran . 𝑡 0 1 2 Cn II
68 oveq2 z = x 2 z = 2 x
69 64 37 65 64 67 68 cnmpt21 φ x 0 1 2 , y 0 1 2 x topGen ran . 𝑡 0 1 2 × t II Cn II
70 64 37 cnmpt2nd φ x 0 1 2 , y 0 1 y topGen ran . 𝑡 0 1 2 × t II Cn II
71 9 14 phtpycn φ F PHtpy J H II × t II Cn J
72 71 5 sseldd φ M II × t II Cn J
73 64 37 69 70 72 cnmpt22f φ x 0 1 2 , y 0 1 2 x M y topGen ran . 𝑡 0 1 2 × t II Cn J
74 iccssre 1 2 1 1 2 1
75 28 30 74 mp2an 1 2 1
76 resttopon topGen ran . TopOn 1 2 1 topGen ran . 𝑡 1 2 1 TopOn 1 2 1
77 58 75 76 mp2an topGen ran . 𝑡 1 2 1 TopOn 1 2 1
78 77 a1i φ topGen ran . 𝑡 1 2 1 TopOn 1 2 1
79 78 37 cnmpt1st φ x 1 2 1 , y 0 1 x topGen ran . 𝑡 1 2 1 × t II Cn topGen ran . 𝑡 1 2 1
80 24 iihalf2cn z 1 2 1 2 z 1 topGen ran . 𝑡 1 2 1 Cn II
81 80 a1i φ z 1 2 1 2 z 1 topGen ran . 𝑡 1 2 1 Cn II
82 68 oveq1d z = x 2 z 1 = 2 x 1
83 78 37 79 78 81 82 cnmpt21 φ x 1 2 1 , y 0 1 2 x 1 topGen ran . 𝑡 1 2 1 × t II Cn II
84 78 37 cnmpt2nd φ x 1 2 1 , y 0 1 y topGen ran . 𝑡 1 2 1 × t II Cn II
85 12 15 phtpycn φ G PHtpy J K II × t II Cn J
86 85 6 sseldd φ N II × t II Cn J
87 78 37 83 84 86 cnmpt22f φ x 1 2 1 , y 0 1 2 x 1 N y topGen ran . 𝑡 1 2 1 × t II Cn J
88 22 23 24 25 26 27 35 37 57 73 87 cnmpopc φ x 0 1 , y 0 1 if x 1 2 2 x M y 2 x 1 N y II × t II Cn J
89 4 88 eqeltrid φ P II × t II Cn J
90 simpll φ s 0 1 s 1 2 φ
91 elii1 s 0 1 2 s 0 1 s 1 2
92 iihalf1 s 0 1 2 2 s 0 1
93 91 92 sylbir s 0 1 s 1 2 2 s 0 1
94 93 adantll φ s 0 1 s 1 2 2 s 0 1
95 9 14 phtpyhtpy φ F PHtpy J H F II Htpy J H
96 95 5 sseldd φ M F II Htpy J H
97 37 9 14 96 htpyi φ 2 s 0 1 2 s M 0 = F 2 s 2 s M 1 = H 2 s
98 90 94 97 syl2anc φ s 0 1 s 1 2 2 s M 0 = F 2 s 2 s M 1 = H 2 s
99 98 simpld φ s 0 1 s 1 2 2 s M 0 = F 2 s
100 simpll φ s 0 1 ¬ s 1 2 φ
101 elii2 s 0 1 ¬ s 1 2 s 1 2 1
102 101 adantll φ s 0 1 ¬ s 1 2 s 1 2 1
103 iihalf2 s 1 2 1 2 s 1 0 1
104 102 103 syl φ s 0 1 ¬ s 1 2 2 s 1 0 1
105 12 15 phtpyhtpy φ G PHtpy J K G II Htpy J K
106 105 6 sseldd φ N G II Htpy J K
107 37 12 15 106 htpyi φ 2 s 1 0 1 2 s 1 N 0 = G 2 s 1 2 s 1 N 1 = K 2 s 1
108 100 104 107 syl2anc φ s 0 1 ¬ s 1 2 2 s 1 N 0 = G 2 s 1 2 s 1 N 1 = K 2 s 1
109 108 simpld φ s 0 1 ¬ s 1 2 2 s 1 N 0 = G 2 s 1
110 99 109 ifeq12da φ s 0 1 if s 1 2 2 s M 0 2 s 1 N 0 = if s 1 2 F 2 s G 2 s 1
111 simpr φ s 0 1 s 0 1
112 0elunit 0 0 1
113 simpl x = s y = 0 x = s
114 113 breq1d x = s y = 0 x 1 2 s 1 2
115 113 oveq2d x = s y = 0 2 x = 2 s
116 simpr x = s y = 0 y = 0
117 115 116 oveq12d x = s y = 0 2 x M y = 2 s M 0
118 115 oveq1d x = s y = 0 2 x 1 = 2 s 1
119 118 116 oveq12d x = s y = 0 2 x 1 N y = 2 s 1 N 0
120 114 117 119 ifbieq12d x = s y = 0 if x 1 2 2 x M y 2 x 1 N y = if s 1 2 2 s M 0 2 s 1 N 0
121 ovex 2 s M 0 V
122 ovex 2 s 1 N 0 V
123 121 122 ifex if s 1 2 2 s M 0 2 s 1 N 0 V
124 120 4 123 ovmpoa s 0 1 0 0 1 s P 0 = if s 1 2 2 s M 0 2 s 1 N 0
125 111 112 124 sylancl φ s 0 1 s P 0 = if s 1 2 2 s M 0 2 s 1 N 0
126 9 12 pcovalg φ s 0 1 F * 𝑝 J G s = if s 1 2 F 2 s G 2 s 1
127 110 125 126 3eqtr4d φ s 0 1 s P 0 = F * 𝑝 J G s
128 98 simprd φ s 0 1 s 1 2 2 s M 1 = H 2 s
129 108 simprd φ s 0 1 ¬ s 1 2 2 s 1 N 1 = K 2 s 1
130 128 129 ifeq12da φ s 0 1 if s 1 2 2 s M 1 2 s 1 N 1 = if s 1 2 H 2 s K 2 s 1
131 1elunit 1 0 1
132 simpl x = s y = 1 x = s
133 132 breq1d x = s y = 1 x 1 2 s 1 2
134 132 oveq2d x = s y = 1 2 x = 2 s
135 simpr x = s y = 1 y = 1
136 134 135 oveq12d x = s y = 1 2 x M y = 2 s M 1
137 134 oveq1d x = s y = 1 2 x 1 = 2 s 1
138 137 135 oveq12d x = s y = 1 2 x 1 N y = 2 s 1 N 1
139 133 136 138 ifbieq12d x = s y = 1 if x 1 2 2 x M y 2 x 1 N y = if s 1 2 2 s M 1 2 s 1 N 1
140 ovex 2 s M 1 V
141 ovex 2 s 1 N 1 V
142 140 141 ifex if s 1 2 2 s M 1 2 s 1 N 1 V
143 139 4 142 ovmpoa s 0 1 1 0 1 s P 1 = if s 1 2 2 s M 1 2 s 1 N 1
144 111 131 143 sylancl φ s 0 1 s P 1 = if s 1 2 2 s M 1 2 s 1 N 1
145 14 15 pcovalg φ s 0 1 H * 𝑝 J K s = if s 1 2 H 2 s K 2 s 1
146 130 144 145 3eqtr4d φ s 0 1 s P 1 = H * 𝑝 J K s
147 9 14 5 phtpyi φ s 0 1 0 M s = F 0 1 M s = F 1
148 147 simpld φ s 0 1 0 M s = F 0
149 simpl x = 0 y = s x = 0
150 149 29 eqbrtrdi x = 0 y = s x 1 2
151 150 iftrued x = 0 y = s if x 1 2 2 x M y 2 x 1 N y = 2 x M y
152 149 oveq2d x = 0 y = s 2 x = 2 0
153 2t0e0 2 0 = 0
154 152 153 eqtrdi x = 0 y = s 2 x = 0
155 simpr x = 0 y = s y = s
156 154 155 oveq12d x = 0 y = s 2 x M y = 0 M s
157 151 156 eqtrd x = 0 y = s if x 1 2 2 x M y 2 x 1 N y = 0 M s
158 ovex 0 M s V
159 157 4 158 ovmpoa 0 0 1 s 0 1 0 P s = 0 M s
160 112 111 159 sylancr φ s 0 1 0 P s = 0 M s
161 9 12 pco0 φ F * 𝑝 J G 0 = F 0
162 161 adantr φ s 0 1 F * 𝑝 J G 0 = F 0
163 148 160 162 3eqtr4d φ s 0 1 0 P s = F * 𝑝 J G 0
164 12 15 6 phtpyi φ s 0 1 0 N s = G 0 1 N s = G 1
165 164 simprd φ s 0 1 1 N s = G 1
166 28 30 ltnlei 1 2 < 1 ¬ 1 1 2
167 31 166 mpbi ¬ 1 1 2
168 simpl x = 1 y = s x = 1
169 168 breq1d x = 1 y = s x 1 2 1 1 2
170 167 169 mtbiri x = 1 y = s ¬ x 1 2
171 170 iffalsed x = 1 y = s if x 1 2 2 x M y 2 x 1 N y = 2 x 1 N y
172 168 oveq2d x = 1 y = s 2 x = 2 1
173 2t1e2 2 1 = 2
174 172 173 eqtrdi x = 1 y = s 2 x = 2
175 174 oveq1d x = 1 y = s 2 x 1 = 2 1
176 2m1e1 2 1 = 1
177 175 176 eqtrdi x = 1 y = s 2 x 1 = 1
178 simpr x = 1 y = s y = s
179 177 178 oveq12d x = 1 y = s 2 x 1 N y = 1 N s
180 171 179 eqtrd x = 1 y = s if x 1 2 2 x M y 2 x 1 N y = 1 N s
181 ovex 1 N s V
182 180 4 181 ovmpoa 1 0 1 s 0 1 1 P s = 1 N s
183 131 111 182 sylancr φ s 0 1 1 P s = 1 N s
184 9 12 pco1 φ F * 𝑝 J G 1 = G 1
185 184 adantr φ s 0 1 F * 𝑝 J G 1 = G 1
186 165 183 185 3eqtr4d φ s 0 1 1 P s = F * 𝑝 J G 1
187 13 21 89 127 146 163 186 isphtpy2d φ P F * 𝑝 J G PHtpy J H * 𝑝 J K