Metamath Proof Explorer


Theorem pco1

Description: The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Hypotheses pcoval.2 φFIICnJ
pcoval.3 φGIICnJ
Assertion pco1 φF*𝑝JG1=G1

Proof

Step Hyp Ref Expression
1 pcoval.2 φFIICnJ
2 pcoval.3 φGIICnJ
3 1 2 pcoval φF*𝑝JG=x01ifx12F2xG2x1
4 3 fveq1d φF*𝑝JG1=x01ifx12F2xG2x11
5 1elunit 101
6 halflt1 12<1
7 halfre 12
8 1re 1
9 7 8 ltnlei 12<1¬112
10 6 9 mpbi ¬112
11 breq1 x=1x12112
12 10 11 mtbiri x=1¬x12
13 12 iffalsed x=1ifx12F2xG2x1=G2x1
14 oveq2 x=12x=21
15 2t1e2 21=2
16 14 15 eqtrdi x=12x=2
17 16 oveq1d x=12x1=21
18 2m1e1 21=1
19 17 18 eqtrdi x=12x1=1
20 19 fveq2d x=1G2x1=G1
21 13 20 eqtrd x=1ifx12F2xG2x1=G1
22 eqid x01ifx12F2xG2x1=x01ifx12F2xG2x1
23 fvex G1V
24 21 22 23 fvmpt 101x01ifx12F2xG2x11=G1
25 5 24 ax-mp x01ifx12F2xG2x11=G1
26 4 25 eqtrdi φF*𝑝JG1=G1