Step |
Hyp |
Ref |
Expression |
1 |
|
pcoval.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
pcoval.3 |
|- ( ph -> G e. ( II Cn J ) ) |
3 |
1 2
|
pcoval |
|- ( ph -> ( F ( *p ` J ) G ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) ) |
4 |
3
|
fveq1d |
|- ( ph -> ( ( F ( *p ` J ) G ) ` 1 ) = ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) ` 1 ) ) |
5 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
6 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
7 |
|
halfre |
|- ( 1 / 2 ) e. RR |
8 |
|
1re |
|- 1 e. RR |
9 |
7 8
|
ltnlei |
|- ( ( 1 / 2 ) < 1 <-> -. 1 <_ ( 1 / 2 ) ) |
10 |
6 9
|
mpbi |
|- -. 1 <_ ( 1 / 2 ) |
11 |
|
breq1 |
|- ( x = 1 -> ( x <_ ( 1 / 2 ) <-> 1 <_ ( 1 / 2 ) ) ) |
12 |
10 11
|
mtbiri |
|- ( x = 1 -> -. x <_ ( 1 / 2 ) ) |
13 |
12
|
iffalsed |
|- ( x = 1 -> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) = ( G ` ( ( 2 x. x ) - 1 ) ) ) |
14 |
|
oveq2 |
|- ( x = 1 -> ( 2 x. x ) = ( 2 x. 1 ) ) |
15 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
16 |
14 15
|
eqtrdi |
|- ( x = 1 -> ( 2 x. x ) = 2 ) |
17 |
16
|
oveq1d |
|- ( x = 1 -> ( ( 2 x. x ) - 1 ) = ( 2 - 1 ) ) |
18 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
19 |
17 18
|
eqtrdi |
|- ( x = 1 -> ( ( 2 x. x ) - 1 ) = 1 ) |
20 |
19
|
fveq2d |
|- ( x = 1 -> ( G ` ( ( 2 x. x ) - 1 ) ) = ( G ` 1 ) ) |
21 |
13 20
|
eqtrd |
|- ( x = 1 -> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) = ( G ` 1 ) ) |
22 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) = ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) |
23 |
|
fvex |
|- ( G ` 1 ) e. _V |
24 |
21 22 23
|
fvmpt |
|- ( 1 e. ( 0 [,] 1 ) -> ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) ` 1 ) = ( G ` 1 ) ) |
25 |
5 24
|
ax-mp |
|- ( ( x e. ( 0 [,] 1 ) |-> if ( x <_ ( 1 / 2 ) , ( F ` ( 2 x. x ) ) , ( G ` ( ( 2 x. x ) - 1 ) ) ) ) ` 1 ) = ( G ` 1 ) |
26 |
4 25
|
eqtrdi |
|- ( ph -> ( ( F ( *p ` J ) G ) ` 1 ) = ( G ` 1 ) ) |