Step |
Hyp |
Ref |
Expression |
1 |
|
pcoval.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
pcoval.3 |
|- ( ph -> G e. ( II Cn J ) ) |
3 |
|
pcoval2.4 |
|- ( ph -> ( F ` 1 ) = ( G ` 0 ) ) |
4 |
|
0re |
|- 0 e. RR |
5 |
|
1re |
|- 1 e. RR |
6 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
7 |
|
1le1 |
|- 1 <_ 1 |
8 |
|
iccss |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ ( 1 / 2 ) /\ 1 <_ 1 ) ) -> ( ( 1 / 2 ) [,] 1 ) C_ ( 0 [,] 1 ) ) |
9 |
4 5 6 7 8
|
mp4an |
|- ( ( 1 / 2 ) [,] 1 ) C_ ( 0 [,] 1 ) |
10 |
9
|
sseli |
|- ( X e. ( ( 1 / 2 ) [,] 1 ) -> X e. ( 0 [,] 1 ) ) |
11 |
1 2
|
pcovalg |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( F ( *p ` J ) G ) ` X ) = if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) ) |
12 |
10 11
|
sylan2 |
|- ( ( ph /\ X e. ( ( 1 / 2 ) [,] 1 ) ) -> ( ( F ( *p ` J ) G ) ` X ) = if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) ) |
13 |
3
|
adantr |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> ( F ` 1 ) = ( G ` 0 ) ) |
14 |
|
simprr |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> X <_ ( 1 / 2 ) ) |
15 |
|
halfre |
|- ( 1 / 2 ) e. RR |
16 |
15 5
|
elicc2i |
|- ( X e. ( ( 1 / 2 ) [,] 1 ) <-> ( X e. RR /\ ( 1 / 2 ) <_ X /\ X <_ 1 ) ) |
17 |
16
|
simp2bi |
|- ( X e. ( ( 1 / 2 ) [,] 1 ) -> ( 1 / 2 ) <_ X ) |
18 |
17
|
ad2antrl |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> ( 1 / 2 ) <_ X ) |
19 |
16
|
simp1bi |
|- ( X e. ( ( 1 / 2 ) [,] 1 ) -> X e. RR ) |
20 |
19
|
ad2antrl |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> X e. RR ) |
21 |
|
letri3 |
|- ( ( X e. RR /\ ( 1 / 2 ) e. RR ) -> ( X = ( 1 / 2 ) <-> ( X <_ ( 1 / 2 ) /\ ( 1 / 2 ) <_ X ) ) ) |
22 |
20 15 21
|
sylancl |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> ( X = ( 1 / 2 ) <-> ( X <_ ( 1 / 2 ) /\ ( 1 / 2 ) <_ X ) ) ) |
23 |
14 18 22
|
mpbir2and |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> X = ( 1 / 2 ) ) |
24 |
23
|
oveq2d |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> ( 2 x. X ) = ( 2 x. ( 1 / 2 ) ) ) |
25 |
|
2cn |
|- 2 e. CC |
26 |
|
2ne0 |
|- 2 =/= 0 |
27 |
25 26
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
28 |
24 27
|
eqtrdi |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> ( 2 x. X ) = 1 ) |
29 |
28
|
fveq2d |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> ( F ` ( 2 x. X ) ) = ( F ` 1 ) ) |
30 |
28
|
oveq1d |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> ( ( 2 x. X ) - 1 ) = ( 1 - 1 ) ) |
31 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
32 |
30 31
|
eqtrdi |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> ( ( 2 x. X ) - 1 ) = 0 ) |
33 |
32
|
fveq2d |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> ( G ` ( ( 2 x. X ) - 1 ) ) = ( G ` 0 ) ) |
34 |
13 29 33
|
3eqtr4d |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> ( F ` ( 2 x. X ) ) = ( G ` ( ( 2 x. X ) - 1 ) ) ) |
35 |
34
|
ifeq1d |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) = if ( X <_ ( 1 / 2 ) , ( G ` ( ( 2 x. X ) - 1 ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) ) |
36 |
|
ifid |
|- if ( X <_ ( 1 / 2 ) , ( G ` ( ( 2 x. X ) - 1 ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) = ( G ` ( ( 2 x. X ) - 1 ) ) |
37 |
35 36
|
eqtrdi |
|- ( ( ph /\ ( X e. ( ( 1 / 2 ) [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) -> if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) = ( G ` ( ( 2 x. X ) - 1 ) ) ) |
38 |
37
|
expr |
|- ( ( ph /\ X e. ( ( 1 / 2 ) [,] 1 ) ) -> ( X <_ ( 1 / 2 ) -> if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) = ( G ` ( ( 2 x. X ) - 1 ) ) ) ) |
39 |
|
iffalse |
|- ( -. X <_ ( 1 / 2 ) -> if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) = ( G ` ( ( 2 x. X ) - 1 ) ) ) |
40 |
38 39
|
pm2.61d1 |
|- ( ( ph /\ X e. ( ( 1 / 2 ) [,] 1 ) ) -> if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) = ( G ` ( ( 2 x. X ) - 1 ) ) ) |
41 |
12 40
|
eqtrd |
|- ( ( ph /\ X e. ( ( 1 / 2 ) [,] 1 ) ) -> ( ( F ( *p ` J ) G ) ` X ) = ( G ` ( ( 2 x. X ) - 1 ) ) ) |