Metamath Proof Explorer


Theorem pcoval2

Description: Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010) (Proof shortened by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses pcoval.2 φFIICnJ
pcoval.3 φGIICnJ
pcoval2.4 φF1=G0
Assertion pcoval2 φX121F*𝑝JGX=G2X1

Proof

Step Hyp Ref Expression
1 pcoval.2 φFIICnJ
2 pcoval.3 φGIICnJ
3 pcoval2.4 φF1=G0
4 0re 0
5 1re 1
6 halfge0 012
7 1le1 11
8 iccss 010121112101
9 4 5 6 7 8 mp4an 12101
10 9 sseli X121X01
11 1 2 pcovalg φX01F*𝑝JGX=ifX12F2XG2X1
12 10 11 sylan2 φX121F*𝑝JGX=ifX12F2XG2X1
13 3 adantr φX121X12F1=G0
14 simprr φX121X12X12
15 halfre 12
16 15 5 elicc2i X121X12XX1
17 16 simp2bi X12112X
18 17 ad2antrl φX121X1212X
19 16 simp1bi X121X
20 19 ad2antrl φX121X12X
21 letri3 X12X=12X1212X
22 20 15 21 sylancl φX121X12X=12X1212X
23 14 18 22 mpbir2and φX121X12X=12
24 23 oveq2d φX121X122X=212
25 2cn 2
26 2ne0 20
27 25 26 recidi 212=1
28 24 27 eqtrdi φX121X122X=1
29 28 fveq2d φX121X12F2X=F1
30 28 oveq1d φX121X122X1=11
31 1m1e0 11=0
32 30 31 eqtrdi φX121X122X1=0
33 32 fveq2d φX121X12G2X1=G0
34 13 29 33 3eqtr4d φX121X12F2X=G2X1
35 34 ifeq1d φX121X12ifX12F2XG2X1=ifX12G2X1G2X1
36 ifid ifX12G2X1G2X1=G2X1
37 35 36 eqtrdi φX121X12ifX12F2XG2X1=G2X1
38 37 expr φX121X12ifX12F2XG2X1=G2X1
39 iffalse ¬X12ifX12F2XG2X1=G2X1
40 38 39 pm2.61d1 φX121ifX12F2XG2X1=G2X1
41 12 40 eqtrd φX121F*𝑝JGX=G2X1