Metamath Proof Explorer


Theorem pcovalg

Description: Evaluate the concatenation of two paths. (Contributed by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses pcoval.2 φ F II Cn J
pcoval.3 φ G II Cn J
Assertion pcovalg φ X 0 1 F * 𝑝 J G X = if X 1 2 F 2 X G 2 X 1

Proof

Step Hyp Ref Expression
1 pcoval.2 φ F II Cn J
2 pcoval.3 φ G II Cn J
3 1 2 pcoval φ F * 𝑝 J G = x 0 1 if x 1 2 F 2 x G 2 x 1
4 3 fveq1d φ F * 𝑝 J G X = x 0 1 if x 1 2 F 2 x G 2 x 1 X
5 breq1 x = X x 1 2 X 1 2
6 oveq2 x = X 2 x = 2 X
7 6 fveq2d x = X F 2 x = F 2 X
8 6 fvoveq1d x = X G 2 x 1 = G 2 X 1
9 5 7 8 ifbieq12d x = X if x 1 2 F 2 x G 2 x 1 = if X 1 2 F 2 X G 2 X 1
10 eqid x 0 1 if x 1 2 F 2 x G 2 x 1 = x 0 1 if x 1 2 F 2 x G 2 x 1
11 fvex F 2 X V
12 fvex G 2 X 1 V
13 11 12 ifex if X 1 2 F 2 X G 2 X 1 V
14 9 10 13 fvmpt X 0 1 x 0 1 if x 1 2 F 2 x G 2 x 1 X = if X 1 2 F 2 X G 2 X 1
15 4 14 sylan9eq φ X 0 1 F * 𝑝 J G X = if X 1 2 F 2 X G 2 X 1