Database
BASIC TOPOLOGY
Metric spaces
The fundamental group
pcovalg
Next ⟩
pcoval1
Metamath Proof Explorer
Ascii
Unicode
Theorem
pcovalg
Description:
Evaluate the concatenation of two paths.
(Contributed by
Mario Carneiro
, 7-Jun-2014)
Ref
Expression
Hypotheses
pcoval.2
⊢
φ
→
F
∈
II
Cn
J
pcoval.3
⊢
φ
→
G
∈
II
Cn
J
Assertion
pcovalg
⊢
φ
∧
X
∈
0
1
→
F
*
𝑝
⁡
J
G
⁡
X
=
if
X
≤
1
2
F
⁡
2
⁢
X
G
⁡
2
⁢
X
−
1
Proof
Step
Hyp
Ref
Expression
1
pcoval.2
⊢
φ
→
F
∈
II
Cn
J
2
pcoval.3
⊢
φ
→
G
∈
II
Cn
J
3
1
2
pcoval
⊢
φ
→
F
*
𝑝
⁡
J
G
=
x
∈
0
1
⟼
if
x
≤
1
2
F
⁡
2
⁢
x
G
⁡
2
⁢
x
−
1
4
3
fveq1d
⊢
φ
→
F
*
𝑝
⁡
J
G
⁡
X
=
x
∈
0
1
⟼
if
x
≤
1
2
F
⁡
2
⁢
x
G
⁡
2
⁢
x
−
1
⁡
X
5
breq1
⊢
x
=
X
→
x
≤
1
2
↔
X
≤
1
2
6
oveq2
⊢
x
=
X
→
2
⁢
x
=
2
⁢
X
7
6
fveq2d
⊢
x
=
X
→
F
⁡
2
⁢
x
=
F
⁡
2
⁢
X
8
6
fvoveq1d
⊢
x
=
X
→
G
⁡
2
⁢
x
−
1
=
G
⁡
2
⁢
X
−
1
9
5
7
8
ifbieq12d
⊢
x
=
X
→
if
x
≤
1
2
F
⁡
2
⁢
x
G
⁡
2
⁢
x
−
1
=
if
X
≤
1
2
F
⁡
2
⁢
X
G
⁡
2
⁢
X
−
1
10
eqid
⊢
x
∈
0
1
⟼
if
x
≤
1
2
F
⁡
2
⁢
x
G
⁡
2
⁢
x
−
1
=
x
∈
0
1
⟼
if
x
≤
1
2
F
⁡
2
⁢
x
G
⁡
2
⁢
x
−
1
11
fvex
⊢
F
⁡
2
⁢
X
∈
V
12
fvex
⊢
G
⁡
2
⁢
X
−
1
∈
V
13
11
12
ifex
⊢
if
X
≤
1
2
F
⁡
2
⁢
X
G
⁡
2
⁢
X
−
1
∈
V
14
9
10
13
fvmpt
⊢
X
∈
0
1
→
x
∈
0
1
⟼
if
x
≤
1
2
F
⁡
2
⁢
x
G
⁡
2
⁢
x
−
1
⁡
X
=
if
X
≤
1
2
F
⁡
2
⁢
X
G
⁡
2
⁢
X
−
1
15
4
14
sylan9eq
⊢
φ
∧
X
∈
0
1
→
F
*
𝑝
⁡
J
G
⁡
X
=
if
X
≤
1
2
F
⁡
2
⁢
X
G
⁡
2
⁢
X
−
1