Metamath Proof Explorer


Theorem pcoval1

Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses pcoval.2 φ F II Cn J
pcoval.3 φ G II Cn J
Assertion pcoval1 φ X 0 1 2 F * 𝑝 J G X = F 2 X

Proof

Step Hyp Ref Expression
1 pcoval.2 φ F II Cn J
2 pcoval.3 φ G II Cn J
3 0re 0
4 1re 1
5 0le0 0 0
6 halfre 1 2
7 halflt1 1 2 < 1
8 6 4 7 ltleii 1 2 1
9 iccss 0 1 0 0 1 2 1 0 1 2 0 1
10 3 4 5 8 9 mp4an 0 1 2 0 1
11 10 sseli X 0 1 2 X 0 1
12 1 2 pcovalg φ X 0 1 F * 𝑝 J G X = if X 1 2 F 2 X G 2 X 1
13 11 12 sylan2 φ X 0 1 2 F * 𝑝 J G X = if X 1 2 F 2 X G 2 X 1
14 elii1 X 0 1 2 X 0 1 X 1 2
15 14 simprbi X 0 1 2 X 1 2
16 15 iftrued X 0 1 2 if X 1 2 F 2 X G 2 X 1 = F 2 X
17 16 adantl φ X 0 1 2 if X 1 2 F 2 X G 2 X 1 = F 2 X
18 13 17 eqtrd φ X 0 1 2 F * 𝑝 J G X = F 2 X