Metamath Proof Explorer


Theorem pcoval1

Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses pcoval.2 φFIICnJ
pcoval.3 φGIICnJ
Assertion pcoval1 φX012F*𝑝JGX=F2X

Proof

Step Hyp Ref Expression
1 pcoval.2 φFIICnJ
2 pcoval.3 φGIICnJ
3 0re 0
4 1re 1
5 0le0 00
6 halfre 12
7 halflt1 12<1
8 6 4 7 ltleii 121
9 iccss 010012101201
10 3 4 5 8 9 mp4an 01201
11 10 sseli X012X01
12 1 2 pcovalg φX01F*𝑝JGX=ifX12F2XG2X1
13 11 12 sylan2 φX012F*𝑝JGX=ifX12F2XG2X1
14 elii1 X012X01X12
15 14 simprbi X012X12
16 15 iftrued X012ifX12F2XG2X1=F2X
17 16 adantl φX012ifX12F2XG2X1=F2X
18 13 17 eqtrd φX012F*𝑝JGX=F2X