Step |
Hyp |
Ref |
Expression |
1 |
|
pcoval.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
pcoval.3 |
|- ( ph -> G e. ( II Cn J ) ) |
3 |
|
0re |
|- 0 e. RR |
4 |
|
1re |
|- 1 e. RR |
5 |
|
0le0 |
|- 0 <_ 0 |
6 |
|
halfre |
|- ( 1 / 2 ) e. RR |
7 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
8 |
6 4 7
|
ltleii |
|- ( 1 / 2 ) <_ 1 |
9 |
|
iccss |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ 0 /\ ( 1 / 2 ) <_ 1 ) ) -> ( 0 [,] ( 1 / 2 ) ) C_ ( 0 [,] 1 ) ) |
10 |
3 4 5 8 9
|
mp4an |
|- ( 0 [,] ( 1 / 2 ) ) C_ ( 0 [,] 1 ) |
11 |
10
|
sseli |
|- ( X e. ( 0 [,] ( 1 / 2 ) ) -> X e. ( 0 [,] 1 ) ) |
12 |
1 2
|
pcovalg |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( F ( *p ` J ) G ) ` X ) = if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) ) |
13 |
11 12
|
sylan2 |
|- ( ( ph /\ X e. ( 0 [,] ( 1 / 2 ) ) ) -> ( ( F ( *p ` J ) G ) ` X ) = if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) ) |
14 |
|
elii1 |
|- ( X e. ( 0 [,] ( 1 / 2 ) ) <-> ( X e. ( 0 [,] 1 ) /\ X <_ ( 1 / 2 ) ) ) |
15 |
14
|
simprbi |
|- ( X e. ( 0 [,] ( 1 / 2 ) ) -> X <_ ( 1 / 2 ) ) |
16 |
15
|
iftrued |
|- ( X e. ( 0 [,] ( 1 / 2 ) ) -> if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) = ( F ` ( 2 x. X ) ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ X e. ( 0 [,] ( 1 / 2 ) ) ) -> if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) = ( F ` ( 2 x. X ) ) ) |
18 |
13 17
|
eqtrd |
|- ( ( ph /\ X e. ( 0 [,] ( 1 / 2 ) ) ) -> ( ( F ( *p ` J ) G ) ` X ) = ( F ` ( 2 x. X ) ) ) |