Metamath Proof Explorer


Theorem pcoval1

Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses pcoval.2
|- ( ph -> F e. ( II Cn J ) )
pcoval.3
|- ( ph -> G e. ( II Cn J ) )
Assertion pcoval1
|- ( ( ph /\ X e. ( 0 [,] ( 1 / 2 ) ) ) -> ( ( F ( *p ` J ) G ) ` X ) = ( F ` ( 2 x. X ) ) )

Proof

Step Hyp Ref Expression
1 pcoval.2
 |-  ( ph -> F e. ( II Cn J ) )
2 pcoval.3
 |-  ( ph -> G e. ( II Cn J ) )
3 0re
 |-  0 e. RR
4 1re
 |-  1 e. RR
5 0le0
 |-  0 <_ 0
6 halfre
 |-  ( 1 / 2 ) e. RR
7 halflt1
 |-  ( 1 / 2 ) < 1
8 6 4 7 ltleii
 |-  ( 1 / 2 ) <_ 1
9 iccss
 |-  ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ 0 /\ ( 1 / 2 ) <_ 1 ) ) -> ( 0 [,] ( 1 / 2 ) ) C_ ( 0 [,] 1 ) )
10 3 4 5 8 9 mp4an
 |-  ( 0 [,] ( 1 / 2 ) ) C_ ( 0 [,] 1 )
11 10 sseli
 |-  ( X e. ( 0 [,] ( 1 / 2 ) ) -> X e. ( 0 [,] 1 ) )
12 1 2 pcovalg
 |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( F ( *p ` J ) G ) ` X ) = if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) )
13 11 12 sylan2
 |-  ( ( ph /\ X e. ( 0 [,] ( 1 / 2 ) ) ) -> ( ( F ( *p ` J ) G ) ` X ) = if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) )
14 elii1
 |-  ( X e. ( 0 [,] ( 1 / 2 ) ) <-> ( X e. ( 0 [,] 1 ) /\ X <_ ( 1 / 2 ) ) )
15 14 simprbi
 |-  ( X e. ( 0 [,] ( 1 / 2 ) ) -> X <_ ( 1 / 2 ) )
16 15 iftrued
 |-  ( X e. ( 0 [,] ( 1 / 2 ) ) -> if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) = ( F ` ( 2 x. X ) ) )
17 16 adantl
 |-  ( ( ph /\ X e. ( 0 [,] ( 1 / 2 ) ) ) -> if ( X <_ ( 1 / 2 ) , ( F ` ( 2 x. X ) ) , ( G ` ( ( 2 x. X ) - 1 ) ) ) = ( F ` ( 2 x. X ) ) )
18 13 17 eqtrd
 |-  ( ( ph /\ X e. ( 0 [,] ( 1 / 2 ) ) ) -> ( ( F ( *p ` J ) G ) ` X ) = ( F ` ( 2 x. X ) ) )