Step |
Hyp |
Ref |
Expression |
1 |
|
pcoval.2 |
|- ( ph -> F e. ( II Cn J ) ) |
2 |
|
pcoval.3 |
|- ( ph -> G e. ( II Cn J ) ) |
3 |
|
0re |
|- 0 e. RR |
4 |
|
0le0 |
|- 0 <_ 0 |
5 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
6 |
|
halfre |
|- ( 1 / 2 ) e. RR |
7 |
3 6
|
elicc2i |
|- ( 0 e. ( 0 [,] ( 1 / 2 ) ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 <_ ( 1 / 2 ) ) ) |
8 |
3 4 5 7
|
mpbir3an |
|- 0 e. ( 0 [,] ( 1 / 2 ) ) |
9 |
1 2
|
pcoval1 |
|- ( ( ph /\ 0 e. ( 0 [,] ( 1 / 2 ) ) ) -> ( ( F ( *p ` J ) G ) ` 0 ) = ( F ` ( 2 x. 0 ) ) ) |
10 |
8 9
|
mpan2 |
|- ( ph -> ( ( F ( *p ` J ) G ) ` 0 ) = ( F ` ( 2 x. 0 ) ) ) |
11 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
12 |
11
|
fveq2i |
|- ( F ` ( 2 x. 0 ) ) = ( F ` 0 ) |
13 |
10 12
|
eqtrdi |
|- ( ph -> ( ( F ( *p ` J ) G ) ` 0 ) = ( F ` 0 ) ) |